dc.contributor.author
Lu, Haidong
dc.contributor.author
Kim, Dong-Jik
dc.contributor.author
Aramberri, Hugo
dc.contributor.author
Holzer, Marco
dc.contributor.author
Buragohain, Pratyush
dc.contributor.author
Dutta, Sangita
dc.contributor.author
Schroeder, Uwe
dc.contributor.author
Deshpande, Veeresh
dc.contributor.author
Íñiguez, Jorge
dc.contributor.author
Dubourdieu, Catherine
dc.date.accessioned
2024-03-15T12:12:16Z
dc.date.available
2024-03-15T12:12:16Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/42859
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-42575
dc.description.abstract
HfO2-based thin films hold huge promise for integrated devices as they show full compatibility with semiconductor technologies and robust ferroelectric properties at nanometer scale. While their polarization switching behavior has been widely investigated, their electromechanical response received much less attention so far. Here, we demonstrate that piezoelectricity in Hf0.5Zr0.5O2 ferroelectric capacitors is not an invariable property but, in fact, can be intrinsically changed by electrical field cycling. Hf0.5Zr0.5O2 capacitors subjected to ac cycling undergo a continuous transition from a positive effective piezoelectric coefficient d33 in the pristine state to a fully inverted negative d33 state, while, in parallel, the polarization monotonically increases. Not only can the sign of d33 be uniformly inverted in the whole capacitor volume, but also, with proper ac training, the net effective piezoresponse can be nullified while the polarization is kept fully switchable. Moreover, the local piezoresponse force microscopy signal also gradually goes through the zero value upon ac cycling. Density functional theory calculations suggest that the observed behavior is a result of a structural transformation from a weakly-developed polar orthorhombic phase towards a well-developed polar orthorhombic phase. The calculations also suggest the possible occurrence of a non-piezoelectric ferroelectric Hf0.5Zr0.5O2. Our experimental findings create an unprecedented potential for tuning the electromechanical functionality of ferroelectric HfO2-based devices.
en
dc.format.extent
9 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Electronic devices
en
dc.subject
Electronic properties and materials
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Electrically induced cancellation and inversion of piezoelectricity in ferroelectric Hf0.5Zr0.5O2
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
860
dcterms.bibliographicCitation.doi
10.1038/s41467-024-44690-9
dcterms.bibliographicCitation.journaltitle
Nature Communications
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
15
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41467-024-44690-9
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2041-1723
refubium.resourceType.provider
WoS-Alert