dc.contributor.author
Kössler, Wolfgang
dc.contributor.author
Lenz, Hans-J.
dc.contributor.author
Wang, Xing D.
dc.date.accessioned
2024-11-29T07:13:47Z
dc.date.available
2024-11-29T07:13:47Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/42799
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-42515
dc.description.abstract
The Benford law is used world-wide for detecting non-conformance or data fraud
of numerical data. It says that the significand of a data set from the universe is not
uniformly, but logarithmically distributed. Especially, the first non-zero digit is One
with an approximate probability of 0.3. There are several tests available for testing
Benford, the best known are Pearson’s x2-test, the Kolmogorov–Smirnov test and a
modified version of the MAD-test. In the present paper we propose some tests, three
of the four invariant sum tests are new and they are motivated by the sum invariance
property of the Benford law. Two distance measures are investigated, Euclidean
and Mahalanobis distance of the standardized sums to the orign. We use the significands
corresponding to the first significant digit as well as the second significant
digit, respectively. Moreover, we suggest inproved versions of the MAD-test and
obtain critical values that are independent of the sample sizes. For illustration the
tests are applied to specifically selected data sets where prior knowledge is available
about being or not being Benford. Furthermore we discuss the role of truncation of
distributions.
en
dc.format.extent
22 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Goodness of fit test
en
dc.subject
Sum invariance
en
dc.subject
Data manipulation
en
dc.subject
Data quality
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Some new invariant sum tests and MAD tests for the assessment of Benford’s law
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1007/s00180-024-01463-8
dcterms.bibliographicCitation.journaltitle
Computational Statistics
dcterms.bibliographicCitation.number
7
dcterms.bibliographicCitation.pagestart
3779
dcterms.bibliographicCitation.pageend
3800
dcterms.bibliographicCitation.volume
39
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s00180-024-01463-8
refubium.affiliation
Wirtschaftswissenschaft
refubium.affiliation.other
Volkswirtschaftslehre / Institut für Statistik und Ökonometrie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1613-9658
refubium.resourceType.provider
WoS-Alert