dc.contributor.author
Sharma, Sangeeta
dc.contributor.author
Elliott, Peter
dc.contributor.author
Shallcross, Samuel
dc.date.accessioned
2024-04-11T09:02:02Z
dc.date.available
2024-04-11T09:02:02Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/42763
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-42479
dc.description.abstract
Spin and valley indices represent the key quantum labels of quasi-particles in a wide class of two-dimensional materials and form the foundational elements of the fields of spintronics and valleytronics. Control over these degrees of freedom, therefore, remains the central challenge in these fields. Here, we show that femtosecond laser light combining optical frequency circularly polarized pulse and a terahertz (THz) frequency linearly polarized pulse, a so-called “hencomb” pulse, can generate precisely tailored and 90% pure spin currents for the dichalcogenide WSe2 and >75% pure valley currents for bilayer graphene with gaps greater than 120 millielectron volts (dephasing time, 20 femtoseconds). The frequency of the circular light component and the polarization vector of the THz light component are shown to represent the key control parameters of these pulses. Our results thus open a route toward light control over spin/valley current states at ultrafast times.
en
dc.format.extent
9 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc/4.0/
dc.subject
Terahertz light
en
dc.subject
Spin and valley indices
en
dc.subject
Valleytronics
en
dc.subject
Spin currents
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::539 Moderne Physik
dc.title
THz induced giant spin and valley currents
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
97540
dcterms.bibliographicCitation.articlenumber
eadf3673
dcterms.bibliographicCitation.doi
10.1126/sciadv.adf3673
dcterms.bibliographicCitation.journaltitle
Science Advances
dcterms.bibliographicCitation.number
11
dcterms.bibliographicCitation.originalpublishername
American Association for the Advancement of Science
dcterms.bibliographicCitation.originalpublisherplace
Washington, DC [u.a.]
dcterms.bibliographicCitation.volume
9 (2023)
dcterms.bibliographicCitation.url
https://www.science.org/doi/10.1126/sciadv.adf3673
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Theoretische Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
2375-2548