dc.contributor.author
Chemnitz, Robin
dc.contributor.author
Engel, Maximilian
dc.contributor.author
Koltai, Péter
dc.date.accessioned
2024-03-11T10:16:59Z
dc.date.available
2024-03-11T10:16:59Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/42735
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-42454
dc.description.abstract
We consider linear cocycles taking values in
driven by homeomorphic transformations of a smooth manifold, in discrete and continuous time. We show that any discrete-time cocycle can be extended to a continuous-time cocycle, while preserving its characteristic properties. We provide a necessary and sufficient condition under which this extension is canonical in the sense that the base is extended to an associated suspension flow and that the discrete-time cocycle is recovered as the time-1 map of the continuous-time cocycle. Further, we refine our general result for the case of (quasi-)periodic driving. We use our findings to construct a non-uniformly hyperbolic continuous-time cocycle in
over a uniquely ergodic driving.
en
dc.format.extent
13 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
linear cocycles
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Continuous-time extensions of discrete-time cocycles
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1090/bproc/209
dcterms.bibliographicCitation.journaltitle
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, SERIES B
dcterms.bibliographicCitation.pagestart
23
dcterms.bibliographicCitation.pageend
35
dcterms.bibliographicCitation.volume
11 (2024)
dcterms.bibliographicCitation.url
https://doi.org/10.1090/bproc/209
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.funding
Publikationsfonds FU
refubium.note.author
We acknowledge support by the Open Access Publication Fund of the Freie Universität Berlin.
en
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2330-1511