dc.contributor.author
Hinsche, Marcel
dc.contributor.author
Ioannou, Marios
dc.contributor.author
Nietner, Alexander
dc.contributor.author
Haferkamp, Jonas
dc.contributor.author
Quek, Yihiu
dc.contributor.author
Hangleiter, D.
dc.contributor.author
Seifert, J.-P.
dc.contributor.author
Eisert, Jens
dc.contributor.author
Sweke, Ryan
dc.date.accessioned
2024-04-09T09:36:39Z
dc.date.available
2024-04-09T09:36:39Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/42709
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-42429
dc.description.abstract
The task of learning a probability distribution from samples is ubiquitous across the natural sciences. The output distributions of local quantum circuits are of central importance in both quantum advantage proposals and a variety of quantum machine learning algorithms. In this work, we extensively characterize the learnability of output distributions of local quantum circuits. Firstly, we contrast learnability with simulatability by showing that Clifford circuit output distributions are efficiently learnable, while the injection of a single T gate renders the density modeling task hard for any depth d=nΩ(1). We further show that the task of generative modeling universal quantum circuits at any depth d=nΩ(1) is hard for any learning algorithm, classical or quantum, and that for statistical query algorithms, even depth d=ω[log(n)] Clifford circuits are hard to learn. Our results show that one cannot use the output distributions of local quantum circuits to provide a separation between the power of quantum and classical generative modeling algorithms, and therefore provide evidence against quantum advantages for practically relevant probabilistic modeling tasks.
en
dc.format.extent
17 Seiten (Manuskriptversion)
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Machine learning
en
dc.subject
Quantum circuits
en
dc.subject
Quantum computation
en
dc.subject
Quantum computing models
en
dc.subject
Quantum gates
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::539 Moderne Physik
dc.title
One T Gate Makes Distribution Learning Hard
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
97421
dcterms.bibliographicCitation.articlenumber
240602
dcterms.bibliographicCitation.doi
10.1103/PhysRevLett.130.240602
dcterms.bibliographicCitation.journaltitle
Physical Review Letters
dcterms.bibliographicCitation.number
24
dcterms.bibliographicCitation.originalpublishername
American Physical Society
dcterms.bibliographicCitation.originalpublisherplace
College Park, MD
dcterms.bibliographicCitation.volume
130 (2023)
dcterms.bibliographicCitation.url
https://link.aps.org/doi/10.1103/PhysRevLett.130.240602
dcterms.rightsHolder.url
https://journals.aps.org/authors/editorial-policies-open-access
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Theoretische Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0031-9007
dcterms.isPartOf.eissn
1079-7114