dc.contributor.author
Schmidt, Andrea
dc.contributor.author
Kalms, Jacqueline
dc.contributor.author
Lorent, Christian
dc.contributor.author
Katz, Sagie
dc.contributor.author
Frielingsdorf, Stefan
dc.contributor.author
Evans, Rhiannon M.
dc.contributor.author
Fritsch, Johannes
dc.contributor.author
Siebert, Elisabeth
dc.contributor.author
Teutloff, Christian
dc.contributor.author
Armstrong, Fraser A.
dc.contributor.author
Zebger, Ingo
dc.contributor.author
Lenz, Oliver
dc.contributor.author
Scheerer, Patrick
dc.date.accessioned
2024-03-20T10:49:55Z
dc.date.available
2024-03-20T10:49:55Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/42656
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-42380
dc.description.abstract
The membrane-bound [NiFe]-hydrogenase of Cupriavidus necator is a rare example of a truly O2-tolerant hydrogenase. It catalyzes the oxidation of H2 into 2e− and 2H+ in the presence of high O2 concentrations. This characteristic trait is intimately linked to the unique Cys6[4Fe–3S] cluster located in the proximal position to the catalytic center and coordinated by six cysteine residues. Two of these cysteines play an essential role in redox-dependent cluster plasticity, which bestows the cofactor with the capacity to mediate two redox transitions at physiological potentials. Here, we investigated the individual roles of the two additional cysteines by replacing them individually as well as simultaneously with glycine. The crystal structures of the corresponding MBH variants revealed the presence of Cys5[4Fe–4S] or Cys4[4Fe–4S] clusters of different architecture. The protein X-ray crystallography results were correlated with accompanying biochemical, spectroscopic and electrochemical data. The exchanges resulted in a diminished O2 tolerance of all MBH variants, which was attributed to the fact that the modified proximal clusters mediated only one redox transition. The previously proposed O2 protection mechanism that detoxifies O2 to H2O using four protons and four electrons supplied by the cofactor infrastructure, is extended by our results, which suggest efficient shutdown of enzyme function by formation of a hydroxy ligand in the active site that protects the enzyme from O2 binding under electron-deficient conditions.
en
dc.format.extent
16 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
O2- tolerance
en
dc.subject
X-ray crystallography
en
dc.subject
protein film electrochemistry
en
dc.subject
spectro-electrochemistry
en
dc.subject
Resonance Raman spectroscopy
en
dc.subject
EPR spectroscopy
en
dc.subject
IR spectroscopy
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::539 Moderne Physik
dc.title
Stepwise conversion of the Cys6[4Fe–3S] to a Cys4[4Fe–4S] cluster and its impact on the oxygen tolerance of [NiFe]-hydrogenase
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
97083
dcterms.bibliographicCitation.doi
10.1039/d3sc03739h
dcterms.bibliographicCitation.journaltitle
Chemical Science
dcterms.bibliographicCitation.number
40
dcterms.bibliographicCitation.originalpublishername
Ro
dcterms.bibliographicCitation.originalpublisherplace
Cambridge
dcterms.bibliographicCitation.pagestart
11105
dcterms.bibliographicCitation.pageend
11120
dcterms.bibliographicCitation.volume
14 (2023)
dcterms.bibliographicCitation.url
http://xlink.rsc.org/?DOI=D3SC03739H
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Experimentalphysik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
2041-6520
dcterms.isPartOf.eissn
2041-6539