dc.contributor.author
Hadler, Thomas
dc.contributor.author
Wetzl, Jens
dc.contributor.author
Lange, Steffen
dc.contributor.author
Geppert, Christian
dc.contributor.author
Fenski, Max
dc.contributor.author
Abazi, Endri
dc.contributor.author
Gröschel, Jan
dc.contributor.author
Ammann, Clemens
dc.contributor.author
Wenson, Felix
dc.contributor.author
Töpper, Agnieszka
dc.contributor.author
Däuber, Sascha
dc.contributor.author
Schulz-Menger, Jeanette
dc.date.accessioned
2024-03-05T12:51:06Z
dc.date.available
2024-03-05T12:51:06Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/42648
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-42372
dc.description.abstract
Cardiovascular magnetic resonance imaging is the gold standard for cardiac function assessment. Quantification of clinical results (CR) requires precise segmentation. Clinicians statistically compare CRs to ensure reproducibility. Convolutional Neural Network developers compare their results via metrics. Aim: Introducing software capable of automatic multilevel comparison. A multilevel analysis covering segmentations and CRs builds on a generic software backend. Metrics and CRs are calculated with geometric accuracy. Segmentations and CRs are connected to track errors and their effects. An interactive GUI makes the software accessible to different users. The software's multilevel comparison was tested on a use case based on cardiac function assessment. The software shows good reader agreement in CRs and segmentation metrics (Dice > 90%). Decomposing differences by cardiac position revealed excellent agreement in midventricular slices: > 90% but poorer segmentations in apical (> 71%) and basal slices (> 74%). Further decomposition by contour type locates the largest millilitre differences in the basal right cavity (> 3 ml). Visual inspection shows these differences being caused by different basal slice choices. The software illuminated reader differences on several levels. Producing spreadsheets and figures concerning metric values and CR differences was automated. A multilevel reader comparison is feasible and extendable to other cardiac structures in the future.
en
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
cardiovascular magnetic resonance imaging
en
dc.subject
ventricular function
en
dc.subject
multilevel comparison
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::610 Medizin und Gesundheit
dc.title
Introduction of Lazy Luna an automatic software-driven multilevel comparison of ventricular function quantification in cardiovascular magnetic resonance imaging
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
6629
dcterms.bibliographicCitation.doi
10.1038/s41598-022-10464-w
dcterms.bibliographicCitation.journaltitle
Scientific Reports
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.originalpublishername
Springer Nature
dcterms.bibliographicCitation.volume
12
refubium.affiliation
Charité - Universitätsmedizin Berlin
refubium.funding
Springer Nature DEAL
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.bibliographicCitation.pmid
35459270
dcterms.isPartOf.eissn
2045-2322