dc.contributor.author
Jordan, Julia-Christine
dc.date.accessioned
2018-06-07T17:46:58Z
dc.date.available
2015-05-22T08:04:04.205Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/4260
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-8460
dc.description
Cover sheets
Acknowledgement.........................................................................................3
List of
abbreviation........................................................................................8
List of
figures..............................................................................................12
List of
tables................................................................................................15
1\.
Introduction.............................................................................................16
1.1 Electrical and chemical
synapses...................................................16 1.2
Neurotransmitters...............................................................................18
1.3 The synaptic vesicle cycle of a chemical synapse........................18
1.4 The role of vesicular glutamate transporters (VGLUTs) in the mammalian
nervous
system....................................................................22
1.5 The involvement of VGLUTs in neurological and psychiatric
disorders......................................................................................................26
1.6 The importance of VGLUT1 and its C-terminus.............................26
1.7 Aim of this
thesis..................................................................................30
2\. Material and Methods
............................................................................32
Introduction of the main
techniques........................................................32 2A:
Whole-cell voltage clamp recordings in autaptic culture to study
neurotransmission....................................................................................32
2B: pH-sensitive green fluorescent protein (pHluorin)-based live cell imaging
to monitor synaptic vesicle cycling.........................................35
2C: Electron microscopy to investigate the synaptic vesicle
morphology.................................................................................................37
Performance and evaluation of the
experiments.................................................................................................39
2.1 Neuronal
culture..................................................................................39
2.2 PCR for
genotyping.............................................................................41
2.3 Lentivirus constructs and
production...............................................42 2.4 RNA
interference by shRNA for protein knockdown......................43 2.5
Electrophysiology.................................................................................44
2.6 pHluorin
imaging.................................................................................46
2.7 Immunocytochemistry and ratiometric imaging............................48
2.8 Electron
microscopy............................................................................49
2.9
Statistics.................................................................................................51
3\.
Results.....................................................................................................52
3.1 Mutations of the C-terminal VGLUT 1 dileucine-like motif impair VGLUT1
recycling without affecting neurotransmission.....................52 3.1.1
FV510/511AA mutation and S504EEK507 deletion results in slower VGLUT1
retrieval............................................................................53
3.1.2. Mutating the C-terminal VGLUT1 dileucine-like motif sequence not
affects neurotransmission.............................................57 3.1.3
Electron microscopy analyses of VGLUT1 FV510/511AA mutation and S504EEK507
deletion reveal no alterations on synaptic vesicle morphology or
density.................................................62 3.2 C-terminus
truncation constructs illustrate the importance for VGLUT1 recycling during
endocytosis....................................................67 3.2.1
Quantifications of VGLUT1 full C-terminus truncation expression reveal protein
mislocalization.............................................67 3.2.2
Electrophysiology data of the VGLUT1 full C-terminus truncation construct
reveal impaired
neurotransmission....................................................................................70
3.2.3 A C-terminus truncation of VGLUT2 demonstrates a non-isoform-specific
effect of impaired
neurotransmission.....................................................................................74
3.2.4 A C-terminus chimera can also not rescue the impaired protein function
of a VGLUT1 full C-terminus truncation.....................76 3.2.5 VGLUT2
knockdown in hippocampal neurons validates the reduced neurotransmission in
the VGLUT1 C-terminus
chimera.........................................................................................................80
3.2.6 A shorter VGLU1 C-terminus truncation version with an additional WAEPE
motif sequence can rescue defects in neurotransmission to wildtype rescue
levels.......................................84 3.2.7 Further synaptic vesicle
pool depletion experiments also reveal no differences between the shorter
VGLUT1 C-terminus truncation and the wildtype
rescue.........................................................88 3.2.8
pHluorin experiments demonstrate a drastic impaired VGLUT1 recycling of the
shorter C-terminus truncation......................................89 3.2.9
Synaptophysin-pHluorin experiments reveal only slight changes in the general
synaptic vesicle cycle of the shorter VGLUT1 C-terminus
truncation................................................................................95
3.2.10 Morphological synaptic vesicle analyses reveal a KO-like phenotype of
the VGLUT1 full C-terminus truncation, which can be rescued with the shorter
truncation.........................................................97 3.3
Investigations of putative VGLUT1 C-terminal serine phosphorylation sites
suggest a modulatory role of S504 in synaptic
transmission.............................................................................................103
3.3.1 The VGLUT1 mutant S504A shows evidence of higher neurotransmitter
release........................................................................104
3.3.2 Different to S504A a VGLUT1 S504E mutation does not lead to changes in
neurotransmitter release..................................................109
3.3.3 Putative C-terminal VGLU1 serine phosphorylation site mutants show no
changes in synaptic vesicle cycling....................112 3.3.4 The putative
C-terminal VGLUT1 serine phosphorylation site mutations also show no changes
in synaptic vesicle morphology and
density................................................................................................117
4.Discussion.............................................................................................120
4.1 Slower VGLUT1 recycling by mutated C-terminal dileucine-like motif
seuquence does not affect
neurotransmission...................................................................................120
4.2 The C-terminus truncation VGLUT1∆504-560 leads to decelerated VGLUT1
retrieval without affecting baseline synaptic
transmission..........................................................................................123
4.3 The C-terminal VGLUT1 S504A mutation leads to higher neurotransmitter
release.......................................................................128
5.Conclusions and
outlook...................................................................131
6\.
Abstract/Zusammenfassung....................................................134/136
7\. List of
references.................................................................................138
Publications..............................................................................................138
Webpages.................................................................................................149
Appendix.....................................................................................................150
A1 Immunocytochemical and electrophysiological quantifications of the VGLUT2
knockdown........................................................................150
A2 Immunocytochemical quantifications of different VGLUT1
constructs...................................................................................................154
Statement of
contributions......................................................................156
Curriculum
vitae........................................................................................157
dc.description.abstract
Vesicular glutamate transporters (VGLUTs) are essential for filling synaptic
vesicles (SVs) with the neurotransmitter (NT) glutamate. After SV fusion and
NT release, SVs are recycled to maintain a constant SV supply. In order for
these SVs to participate again in neurotransmission, they must be refilled.
Therefore, VGLUTs need to be efficiently and correctly targeted to SVs
undergoing endocytosis. Previous studies showed that the C-terminal VGLUT1 FV
motif, which is part of the dileucine-like sequence, is a sorting signal for
VGLUT1 trafficking to SVs. Mutations in the FV motif show slower VGLUT1
recycling (Foss et al., 2013; Voglmaier et al., 2006), but it is unknown,
whether an impaired VGLUT1 retrieval consequently alters glutamatergic
neurotransmission. This issue was addressed by further studying mutant
variants of this VGLUT1 C-terminal dileucine-like motif sequence. Another aim
of the present study was to investigate software predicted putative VGLUT1
C-terminus serine phosphorylation sites to understand their potential role for
the VGLUT1 physiology and SV cycling. Additionally, the functional
consequences of an entire VGLUT1 C-terminus deletion were studied as well.
Therefore, VGLUT1 C-terminal mutants were expressed by lentivirus in autaptic
hippocampal VGLUT1 knockout (KO) neurons and compared to a rescue of the KO
neurons with expression of the VGLUT1 wildtype (WT) protein. Parameters of
release and SV recycling were assessed using whole-cell voltage clamp
recordings in combination with pHluorin-based imaging. With high resolution
electron microscopy (EM) further information were obtained especially about SV
morphology and SV number per synapse, which might be altered according to
changes in vesicular release or recycling properties. Thereby, it was found
out that neurons expressing a full VGLUT1 C-terminus truncation construct
(VGLUT1∆496-560), where all amino acids immediately following the last 12th
transmembrane domain are deleted, are not functional. Those neurons exhibit an
electrophysiological and morphological VGLUT1 KO-like phenotype apparent in
significantly reduced postsynaptic responses and deformed, smaller SVs
compared to WT rescued neurons indicating that the SVs of VGLUT1∆496-560 are
not glutamate filled. A reason for the impairments of VGLUT1∆496-560 may be
protein mislocalization to vesicles. However, no crystal structure of the
VGLUT1 protein exists and it is unclear, whether this deletion may have been
within or close enough to the transmembrane domain causing instability of the
protein and subsequent degradation. In contrast, neurons expressing a
C-terminus truncation construct that was a few amino acids shorter
(VGLUT1∆504-560), including a WAEPE motif sequence, can rescue the VGLUT1 KO-
like phenotype to WT rescue levels, suggesting that the main function of the
transporter to fill SVs with NT is here not affected. Moreover, it could be
also shown that the SV morphology is unaltered in the VGLUT1∆504-560 mutant.
However, the VGLUT1 recycling of VGLUT1∆504-560 is substantially slower
compared to WT rescue levels. Interestingly, additional experiments with
synaptophysin-pHluorin show no significant changes in the general SV recycling
when the shorter VGLUT1 C-terminus truncation mutant (VGLUT1∆504-560) is
present on vesicles. Furthermore, dileucine-like motif sequence mutants, which
show also a slower VGLUT1 recycling, reveal no effects on neurotransmission as
well. These results suggest that the entire VGLUT1 C-terminus, but in
particular the dileucine-like motif sequence, are mainly essential for VGLUT1
recycling, but the speed of VGLUT1 recycling is not a limiting factor for
maintaining baseline synaptic transmission. Furthermore, it was discovered
that a VGLUT1 mutant with one phosphodeficient mutation in a putative serine
phosphorylation site, shows higher NT release, which might indicate a
modulatory role in VGLUT1 function.
de
dc.description.abstract
Vesikuläre Glutamattransporter (VGLUTs) sind essenziell für die Befüllung
synaptischer Vesikel (SV) mit dem Neurotransmitter (NT) Glutamat. Zur
Aufrechterhaltung einer konstanten Vesikelbereitstellung nach ihrer Fusion mit
der Plasmamambran und NT Freisetzung in den synaptischen Spalt werden die SV
recycelt. Damit die SV erneut in der Neurotransmission mitwirken können,
müssen sie wieder mit Glutamate befüllt werden. Dafür müssen VGLUTs während
der Endozytose effizient und zielgerichtet zu den Vesikeln transportiert
werden. Frühere Studien haben gezeigt, dass das C-terminale VGLUT1 FV Motiv,
welches Teil einer Di-Leucin-ähnlichen Sequenz ist, eine Signalsequenz für den
Transport von VGLUT1 zu den SV darstellt und das Mutationen im FV Motiv zu
einem verlangsamtem VGLUT1 Recycling führen (Foss et al., 2013; Voglmaier et
al., 2006). Jedoch ist bislang nicht bekannt, ob in Folge eines
beeinträchtigen VGLUT1 Recyclings die glutamaterge Neurotransmission verändert
wird. Ein Ziel der vorliegenden Arbeit war die Funktion des VGLUT1
C-terminalen Di-Leucin-ähnlichen Sequenzmotivs weiter zu charakterisieren.
Hierfür wurden verschiedene durch zielgerichtete Mutagenese hergestellte
Konstrukte des VGLUT1 C-Terminus untersucht. Ein weiteres Ziel dieser Arbeit
war die Untersuchung Computersoftware-basierter vermeintlicher Serin
Phosphorylierungsstellen des VGLUT1 C-Terminus zur Klärung ihrer potenziellen
Rolle für die VGLUT1 Physiologie und den Vesikelzyklus. Darüber hinaus wurden
auch die funktionellen Konsequenzen einer kompletten Deletierung des VGLUT1
C-Terminus untersucht. Dabei wurde herausgefunden, dass Neurone die ein
vollständig verkürztes VGLUT1 C-Terminus Konstrukt (VGLUT1∆496-560)
exprimieren, bei dem alle Aminsosäuren direkt nach der letzten 12ten
Transmembrandomäne entfernt wurden, nicht funktionell sind. Diese Neurone
weisen im Vergleich zu Wildtyp (WT) Neuronen einen VGLUT1 Knockout
(KO)-ähnlichen Phänotyp mit signifikant reduzierten postsynaptischen Antworten
und deformiert aussehenden, kleineren SV auf. Diese Ergebnisse deuten darauf
hin, dass die Vesikel der VGLUT1∆496-560 Mutante nicht mit Glutamat befüllt
sind. Eine mögliche Ursache dieser Veränderungen der VGLUT1∆496-560 Mutante
könnte eine Misslokalisation des Proteins zu den SV sein. Allerdings gibt es
bisher keine Kristallstruktur vom VGLUT1 Protein, welche belegen könnte ob
diese Deletion in der Nähe der letzten Transmembrandomäne der Grund für ein
möglicherweise instabiles Protein und in Folge dessen einer Degradation
darstellt. Im Gegensatz dazu können Neurone, die ein weniger kurzes
C-terminales Konstrukt (VGLUT1∆504-560) exprimieren, welches eine WAEPE
Motivsequenz einschließt, den KO-ähnlichen Pänotyp wieder auf WT-Niveau
herstellen. Dieses Ergebnis zeigt, dass bei VGLUT1∆504-560 Mutanten die
Funktion des Transporters die SV mit NT zu füllen nicht beeinträchtigt ist.
Dies spiegelt sich auch in der unveränderten Morphologie der Vesikel der
VGLUT1∆504-560 Mutante wieder. Allerdings ist das VGLUT1 Recycling in der
VGLUT1∆504-560 Mutante im Vergleich zum WT drastisch verlangsamt.
Interessanterweise zeigen zusätzliche Experimente, dass der grundlegende
Vesikelzyklus durch diese Mutation keine signifikanten Beeinträchtigungen
aufweist. Mutationen in der Di-Leucin-ähnlichen Motivsequenz, welche genauso
ein verzögertes VGLUT1 Recycling aufweisen, zeigen ebenfalls keine Effekte in
der Neurotransmission. Zusammengefasst zeigen die Ergebisse dieser Arbeit,
dass der gesamte VGLUT1 C-Terminus, insbesondere das Di-Leucin-ähnliche
Sequenzmotiv, hauptverantwortlich für das VGLUT1 Recycling ist. Dabei scheint
die Geschwindigkeit des VGLUT1 Recyclings keinen limitierenden Faktor für die
Erhaltung der grundlegenden synaptischen Transmission darzustellen. Darüber
hinaus kann in dieser Arbeit gezeigt werden, dass die Mutation einer putativen
Serin-Phosphorylierungsstelle, welche eine permanent Dephosphorylierung mimt,
die NT Freisetzung erhöht. Dieses Ergebnis weist darauf hin, dass
Phosphorylierung von VGLUT1 dessen Funktion beeinflusst.
de
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
dileucine-like motif
dc.subject
potential serine phosphorylation
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie
dc.title
Structure-function analysis of the Vesicular glutamate transporter 1 (VGLUT1)
C-terminus
dc.contributor.firstReferee
Prof. Dr. Christian Rosenmund
dc.contributor.furtherReferee
Prof. Dr. Constance Scharff
dc.date.accepted
2015-05-04
dc.identifier.urn
urn:nbn:de:kobv:188-fudissthesis000000099279-1
dc.title.translated
Struktur-Funktionsanalysen des Vesikulären Glutamattransporter 1 (VGLUT1)
C-Terminus
de
refubium.affiliation
Biologie, Chemie, Pharmazie
de
refubium.mycore.fudocsId
FUDISS_thesis_000000099279
refubium.mycore.derivateId
FUDISS_derivate_000000017086
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access