dc.contributor.author
Arzika, Alio Issoufou
dc.contributor.author
Solfanelli, Andrea
dc.contributor.author
Schmid, Harald
dc.contributor.author
Ruffo, Stefano
dc.date.accessioned
2024-03-15T09:03:12Z
dc.date.available
2024-03-15T09:03:12Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/42579
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-42303
dc.description.abstract
We study the transition from integrability to chaos for the three-particle Fermi–Pasta–Ulam–Tsingou (FPUT) model. We can show that both the quartic 𝛽-FPUT model (𝛼=0) and the cubic one (𝛽=0) are integrable by introducing an appropriate Fourier representation to express the nonlinear terms of the Hamiltonian. For generic values of 𝛼 and 𝛽, the model is non-integrable and displays a mixed phase space with both chaotic and regular trajectories. In the classical case, chaos is diagnosed by the investigation of Poincaré sections. In the quantum case, the level spacing statistics in the energy basis belongs to the Gaussian orthogonal ensemble in the chaotic regime, and crosses over to Poissonian behavior in the quasi-integrable low-energy limit. In the chaotic part of the spectrum, two generic observables obey the eigenstate thermalization hypothesis.
en
dc.format.extent
13 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
integrable systems
en
dc.subject
chaotic Hamiltonian systems
en
dc.subject
quantum chaos
en
dc.subject
eigenstate thermalization hypothesis
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::539 Moderne Physik
dc.title
Quantization of Integrable and Chaotic Three-Particle Fermi–Pasta–Ulam–Tsingou Models
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
97260
dcterms.bibliographicCitation.articlenumber
538
dcterms.bibliographicCitation.doi
10.3390/e25030538
dcterms.bibliographicCitation.journaltitle
Entropy
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.originalpublishername
MDPI
dcterms.bibliographicCitation.originalpublisherplace
Basel
dcterms.bibliographicCitation.volume
25 (2023)
dcterms.bibliographicCitation.url
https://www.mdpi.com/1099-4300/25/3/538
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Theoretische Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1099-4300