dc.contributor.author
Kirsh, Jacob M.
dc.contributor.author
Weaver, Jared Bryce
dc.contributor.author
Boxer, Steven G.
dc.contributor.author
Kozuch, Jacek
dc.date.accessioned
2024-04-08T08:55:07Z
dc.date.available
2024-04-08T08:55:07Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/42565
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-42289
dc.description.abstract
Molecular dynamics (MD) simulations are frequently carried out for proteins to investigate the role of electrostatics in their biological function. The choice of force field (FF) can significantly alter the MD results, as the simulated local electrostatic interactions lack benchmarking in the absence of appropriate experimental methods. We recently reported that the transition dipole moment (TDM) of the popular nitrile vibrational probe varies linearly with the environmental electric field, overcoming well-known hydrogen bonding (H-bonding) issues for the nitrile frequency and, thus, enabling the unambiguous measurement of electric fields in proteins (J. Am. Chem. Soc. 2022, 144 (17), 7562–7567). Herein, we utilize this new strategy to enable comparisons of experimental and simulated electric fields in protein environments. Specifically, previously determined TDM electric fields exerted onto nitrile-containing o-cyanophenylalanine residues in photoactive yellow protein are compared with MD electric fields from the fixed-charge AMBER FF and the polarizable AMOEBA FF. We observe that the electric field distributions for H-bonding nitriles are substantially affected by the choice of FF. As such, AMBER underestimates electric fields for nitriles experiencing moderate field strengths; in contrast, AMOEBA robustly recapitulates the TDM electric fields. The FF dependence of the electric fields can be partly explained by the presence of additional negative charge density along the nitrile bond axis in AMOEBA, which is due to the inclusion of higher-order multipole parameters; this, in turn, begets more head-on nitrile H-bonds. We conclude by discussing the implications of the FF dependence for the simulation of nitriles and proteins in general.
en
dc.format.extent
9 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Electric fields
en
dc.subject
Nitrogen compounds
en
dc.subject
Peptides and proteins
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Critical Evaluation of Polarizable and Nonpolarizable Force Fields for Proteins Using Experimentally Derived Nitrile Electric Fields
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1021/jacs.3c14775
dcterms.bibliographicCitation.journaltitle
Journal of the American Chemical Society
dcterms.bibliographicCitation.number
10
dcterms.bibliographicCitation.pagestart
6983
dcterms.bibliographicCitation.pageend
6991
dcterms.bibliographicCitation.volume
146
dcterms.bibliographicCitation.url
https://doi.org/10.1021/jacs.3c14775
refubium.affiliation
Physik
refubium.funding
ACS Publications
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1520-5126