dc.contributor.author
Engel, Maximilian
dc.contributor.author
Olicón-Méndez, Guillermo
dc.contributor.author
Wehlitz, Nathalie
dc.contributor.author
Winkelmann, Stefanie
dc.date.accessioned
2025-05-23T07:10:40Z
dc.date.available
2025-05-23T07:10:40Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/42531
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-42255
dc.description.abstract
This work explores a synchronization-like phenomenon induced by common noise for continuous-time Markov jump processes given by chemical reaction networks. Based on Gillespie’s stochastic simulation algorithm, a corresponding random dynamical system is formulated in a two-step procedure, at first for the states of the embedded discrete-time Markov chain and then for the augmented Markov chain including random jump times. We uncover a time-shifted synchronization in the sense that—after some initial waiting time—one trajectory exactly replicates another one with a certain time delay. Whether or not such a synchronization behavior occurs depends on the combination of the initial states. We prove this partial time-shifted synchronization for the special setting of a birth-death process by analyzing the corresponding two-point motion of the embedded Markov chain and determine the structure of the associated random attractor. In this context, we also provide general results on existence and form of random attractors for discrete-time, discrete-space random dynamical systems.
en
dc.format.extent
36 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Chemical reaction networks
en
dc.subject
Random attractors
en
dc.subject
Random periodic orbits
en
dc.subject
Reaction jump processes
en
dc.subject
Synchronization
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Synchronization and Random Attractors in Reaction Jump Processes
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1007/s10884-023-10345-4
dcterms.bibliographicCitation.journaltitle
Journal of Dynamics and Differential Equations
dcterms.bibliographicCitation.number
2
dcterms.bibliographicCitation.pagestart
1207
dcterms.bibliographicCitation.pageend
1242
dcterms.bibliographicCitation.volume
37
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s10884-023-10345-4
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik

refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1572-9222