dc.contributor.author
Bornstein, Thomas
dc.contributor.author
Lange, D.
dc.contributor.author
Münchmeyer, J.
dc.contributor.author
Woollam, J.
dc.contributor.author
Rietbrock, A.
dc.contributor.author
Barcheck, G.
dc.contributor.author
Grevemeyer, I.
dc.contributor.author
Tilmann, Frederik
dc.date.accessioned
2024-02-08T08:19:35Z
dc.date.available
2024-02-08T08:19:35Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/42370
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-42095
dc.description.abstract
Detecting phase arrivals and pinpointing the arrival times of seismic phases in seismograms is crucial for many seismological analysis workflows. For land station data, machine learning methods have already found widespread adoption. However, deep learning approaches are not yet commonly applied to ocean bottom data due to a lack of appropriate training data and models. Here, we compiled an extensive and labeled ocean bottom seismometer (OBS) data set from 15 deployments in different tectonic settings, comprising ∼90,000 P and ∼63,000 S manual picks from 13,190 events and 355 stations. We propose PickBlue, an adaptation of the two popular deep learning networks EQTransformer and PhaseNet. PickBlue joint processes three seismometer recordings in conjunction with a hydrophone component and is trained with the waveforms in the new database. The performance is enhanced by employing transfer learning, where initial weights are derived from models trained with land earthquake data. PickBlue significantly outperforms neural networks trained with land stations and models trained without hydrophone data. The model achieves a mean absolute deviation of 0.05 s for P-waves and 0.12 s for S-waves, and we apply the picker on the Hikurangi Ocean Bottom Tremor and Slow Slip OBS deployment offshore New Zealand. We integrate our data set and trained models into SeisBench to enable an easy and direct application in future deployments.
en
dc.format.extent
20 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
ocean bottom seismometer
en
dc.subject
phase picking
en
dc.subject
OBS seismicity database
en
dc.subject
machine learning
en
dc.subject
onset determination
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::550 Geowissenschaften
dc.title
PickBlue: Seismic Phase Picking for Ocean Bottom Seismometers With Deep Learning
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
e2023EA003332
dcterms.bibliographicCitation.doi
10.1029/2023EA003332
dcterms.bibliographicCitation.journaltitle
Earth and Space Science
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
11
dcterms.bibliographicCitation.url
https://doi.org/10.1029/2023EA003332
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Geologische Wissenschaften / Fachrichtung Geophysik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2333-5084
refubium.resourceType.provider
WoS-Alert