dc.contributor.author
Herbst, Konstantin
dc.contributor.author
Bartenschlager, Andreas
dc.contributor.author
Grenfell, John Lee
dc.contributor.author
Iro, Nicolas
dc.contributor.author
Sinnhuber, Miriam
dc.contributor.author
Taysum, Benjamin
dc.contributor.author
Wunderlich, Fabian
dc.contributor.author
Engelbrecht, N. Eugene
dc.contributor.author
Light, Juandre
dc.contributor.author
Rauer, Heike
dc.date.accessioned
2024-02-07T13:59:22Z
dc.date.available
2024-02-07T13:59:22Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/42358
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-42083
dc.description.abstract
Ongoing observing projects like the James Webb Space Telescope and future missions offer the chance to characterize Earth-like exoplanetary atmospheres. Thereby, M dwarfs are preferred targets for transit observations, for example, due to their favorable planet–star contrast ratio. However, the radiation and particle environment of these cool stars could be far more extreme than what we know from the Sun. Thus, knowing the stellar radiation and particle environment and its possible influence on detectable biosignatures—in particular, signs of life like ozone and methane—is crucial to understanding upcoming transit spectra. In this study, with the help of our unique model suite INCREASE, we investigate the impact of a strong stellar energetic particle event on the atmospheric ionization, neutral and ion chemistry, and atmospheric biosignatures of TRAPPIST-1e. Therefore, transit spectra for six scenarios are simulated. We find that a Carrington-like event drastically increases atmospheric ionization and induces substantial changes in ion chemistry and spectral transmission features: all scenarios show high event-induced amounts of nitrogen dioxide (i.e., at 6.2 μm), a reduction of the atmospheric transit depth in all water bands (i.e., at 5.5–7.0 μm), a decrease of the methane bands (i.e., at 3.0–3.5 μm), and depletion of ozone (i.e., at ∼9.6 μm). Therefore, it is essential to include high-energy particle effects to correctly assign biosignature signals from, e.g., ozone and methane. We further show that the nitric acid feature at 11.0–12.0 μm, discussed as a proxy for stellar particle contamination, is absent in wet-dead atmospheres.
en
dc.format.extent
14 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Atmospheric Ion Chemistry
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::520 Astronomie::520 Astronomie und zugeordnete Wissenschaften
dc.title
Impact of Cosmic Rays on Atmospheric Ion Chemistry and Spectral Transmission Features of TRAPPIST-1e
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
164
dcterms.bibliographicCitation.doi
10.3847/1538-4357/ad0895
dcterms.bibliographicCitation.journaltitle
The Astrophysical Journal
dcterms.bibliographicCitation.number
2
dcterms.bibliographicCitation.volume
961
dcterms.bibliographicCitation.url
https://doi.org/10.3847/1538-4357/ad0895
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Geologische Wissenschaften / Fachrichtung Planetologie und Fernerkundung
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1538-4357
refubium.resourceType.provider
WoS-Alert