dc.contributor.author
Zhang, Youjun
dc.contributor.author
Wiese, Lorenz
dc.contributor.author
Fang, Hao
dc.contributor.author
Alseekh, Saleh
dc.contributor.author
Perez de Souza, Leonardo
dc.contributor.author
Scossa, Federico
dc.contributor.author
Molloy, John J.
dc.contributor.author
Christmann, Mathias
dc.contributor.author
Fernie, Alisdair R.
dc.date.accessioned
2024-02-07T08:12:32Z
dc.date.available
2024-02-07T08:12:32Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/42343
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-42068
dc.description.abstract
The diterpenoid paclitaxel (Taxol) is a chemotherapy medication widely used as a first-line treatment against several types of solid cancers. The supply of paclitaxel from natural sources is limited. However, missing knowledge about the genes involved in several specific metabolic steps of paclitaxel biosynthesis has rendered it difficult to engineer the full pathway. In this study, we used a combination of transcriptomics, cell biology, metabolomics, and pathway reconstitution to identify the complete gene set required for the heterologous production of paclitaxel. We identified the missing steps from the current model of paclitaxel biosynthesis and confirmed the activity of most of the missing enzymes via heterologous expression in Nicotiana benthamiana. Notably, we identified a new C4β-C20 epoxidase that could overcome the first bottleneck of metabolic engineering. We used both previously characterized and newly identified oxomutases/epoxidases, taxane 1β-hydroxylase, taxane 9α-hydroxylase, taxane 9α-dioxygenase, and phenylalanine-CoA ligase, to successfully biosynthesize the key intermediate baccatin III and to convert baccatin III into paclitaxel in N. benthamiana. In combination, these approaches establish a metabolic route to taxoid biosynthesis and provide insights into the unique chemistry that plants use to generate complex bioactive metabolites.
en
dc.format.extent
11 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
paclitaxel biosynthesis
en
dc.subject
synthetic biology
en
dc.subject
baccatin III biosynthesis
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
Synthetic biology identifies the minimal gene set required for paclitaxel biosynthesis in a plant chassis
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1016/j.molp.2023.10.016
dcterms.bibliographicCitation.journaltitle
Molecular Plant
dcterms.bibliographicCitation.number
12
dcterms.bibliographicCitation.pagestart
1951
dcterms.bibliographicCitation.pageend
1961
dcterms.bibliographicCitation.volume
16
dcterms.bibliographicCitation.url
https://doi.org/10.1016/j.molp.2023.10.016
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1752-9867
refubium.resourceType.provider
WoS-Alert