dc.contributor.author
Mezera, Matěj
dc.contributor.author
Menšíková, Jana
dc.contributor.author
Baláž, Pavel
dc.contributor.author
Žonda, Martin
dc.date.accessioned
2024-02-06T13:47:20Z
dc.date.available
2024-02-06T13:47:20Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/42326
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-42051
dc.description.abstract
We utilize neural network quantum states (NQS) to investigate the ground state properties of the Heisenberg model on a Shastry-Sutherland lattice using the variational Monte Carlo method. We show that already relatively simple NQSs can be used to approximate the ground state of this model in its different phases and regimes. We first compare several types of NQSs with each other on small lattices and benchmark their variational energies against the exact diagonalization results. We argue that when precision, generality, and computational costs are taken into account, a good choice for addressing larger systems is a shallow restricted Boltzmann machine NQS. We then show that such NQS can describe the main phases of the model in zero magnetic field. Moreover, NQS based on a restricted Boltzmann machine correctly describes the intriguing plateaus forming in magnetization of the model as a function of increasing magnetic field.
en
dc.format.extent
31 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
neural network quantum states
en
dc.subject
Shastry-Sutherland model
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Neural network quantum states analysis of the Shastry-Sutherland model
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
088
dcterms.bibliographicCitation.doi
10.21468/SciPostPhysCore.6.4.088
dcterms.bibliographicCitation.journaltitle
SciPost Physics Core
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.volume
6
dcterms.bibliographicCitation.url
https://doi.org/10.21468/SciPostPhysCore.6.4.088
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2666-9366
refubium.resourceType.provider
WoS-Alert