dc.contributor.author
Freiberger, Eva Marie
dc.contributor.author
Steffen, Julien
dc.contributor.author
Waleska-Wellnhofer, Natalie J.
dc.contributor.author
Hemauer, Felix
dc.contributor.author
Schwaab, Valentin
dc.contributor.author
Görling, Andreas
dc.contributor.author
Steinrück, Hans-Peter
dc.contributor.author
Papp, Christian
dc.date.accessioned
2024-02-06T10:01:01Z
dc.date.available
2024-02-06T10:01:01Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/42306
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-42031
dc.description.abstract
The adsorption, reaction and thermal stability of bromine on Rh(111)-supported hexagonal boron nitride (h-BN) and graphene were investigated. Synchrotron radiation-based high-resolution x-ray photoelectron spectroscopy (XPS) and temperature-programmed XPS allowed us to follow the adsorption process and the thermal evolution in situ on the molecular scale. On h-BN/Rh(111), bromine adsorbs exclusively in the pores of the nanomesh while we observe no such selectivity for graphene/Rh(111). Upon heating, bromine undergoes an on-surface reaction on h-BN to form polybromides (170–240 K), which subsequently decompose to bromide (240–640 K). The high thermal stability of Br/h-BN/Rh(111) suggests strong/covalent bonding. Bromine on graphene/Rh(111), on the other hand, reveals no distinct reactivity except for intercalation of small amounts of bromine underneath the 2D layer at high temperatures. In both cases, adsorption is reversible upon heating. Our experiments are supported by a comprehensive theoretical study. DFT calculations were used to describe the nature of the h-BN nanomesh and the graphene moiré in detail and to study the adsorption energetics and substrate interaction of bromine. In addition, the adsorption of bromine on h-BN/Rh(111) was simulated by molecular dynamics using a machine-learning force field.
en
dc.format.extent
16 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
hexagonal boron nitride
en
dc.subject
functionalization
en
dc.subject
x-ray photoelectron spectroscopy
en
dc.subject
molecular dynamics
en
dc.subject
machine-learning force field
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Bromination of 2D materials
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
145703
dcterms.bibliographicCitation.journaltitle
Nanotechnology
dcterms.bibliographicCitation.number
14
dcterms.bibliographicCitation.volume
35
dcterms.bibliographicCitation.url
https://doi.org/10.1088/1361-6528/ad1201
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
10.1088/1361-6528/ad1201
refubium.resourceType.provider
WoS-Alert