dc.contributor.author
Fiedler, Bernold
dc.contributor.author
Rocha, Carlos
dc.date.accessioned
2024-02-06T09:37:31Z
dc.date.available
2024-02-06T09:37:31Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/42303
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-42028
dc.description.abstract
We systematically explore a simple class of global attractors, called Sturm due to nodal properties, for the semilinear scalar parabolic partial differential equation (PDE) u(t) = u(xx) + f(x, u, u(x)) on the unit interval 0 < x < 1, under Neumann boundary conditions. This models the interplay of reaction, advection, and diffusion. Our classification is based on the Sturm meanders, which arise from a shooting approach to the ordinary differential equation boundary value problem of equilibrium solutions u(t) = 0. Specifically, we address meanders with only three "noses," each of which is innermost to a nested family of upper or lower meander arcs. The Chafee-Infante paradigm, with cubic nonlinearity f = f(u), features just two noses. Our results on the gradient-like global PDE dynamics include a precise description of the connection graphs. The edges denote PDE heteroclinic orbits v(1) (sic) v(2) between equilibrium vertices v(1), v(2) of adjacent Morse index. The global attractor turns out to be a ball of dimension d, given as the closure of the unstable manifold W-u(O) of the unique equilibrium with maximal Morse index d. Surprisingly, for parabolic PDEs based on irreversible diffusion, the connection graph indicates time reversibility on the (d - 1)-sphere boundary of the global attractor.
en
dc.format.extent
23 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Non linear dynamics
en
dc.subject
Chaotic maps
en
dc.subject
Dynamical systems
en
dc.subject
Mechanical oscillators
en
dc.subject
Functional equations
en
dc.subject
Coordinate system
en
dc.subject
Phase space methods
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Design of Sturm global attractors 1: Meanders with three noses, and reversibility
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
083127
dcterms.bibliographicCitation.doi
10.1063/5.0147634
dcterms.bibliographicCitation.journaltitle
Chaos
dcterms.bibliographicCitation.number
8
dcterms.bibliographicCitation.volume
33
dcterms.bibliographicCitation.url
https://doi.org/10.1063/5.0147634
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1089-7682
refubium.resourceType.provider
WoS-Alert