dc.contributor.author
Aleksanyan, Mina
dc.contributor.author
Grafmüller, Andrea
dc.contributor.author
Crea, Fucsia
dc.contributor.author
Georgiev, Vasil N.
dc.contributor.author
Yandrapalli, Naresh
dc.contributor.author
Block, Stephan
dc.contributor.author
Heberle, Joachim
dc.contributor.author
Dimova, Rumiana
dc.date.accessioned
2024-02-02T08:14:11Z
dc.date.available
2024-02-02T08:14:11Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/42270
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-41996
dc.description.abstract
Light can effectively interrogate biological systems in a reversible and physiologically compatible manner with high spatiotemporal precision. Understanding the biophysics of photo-induced processes in bio-systems is crucial for achieving relevant clinical applications. Employing membranes doped with the photolipid azobenzene-phosphatidylcholine (azo-PC), a holistic picture of light-triggered changes in membrane kinetics, morphology, and material properties obtained from correlative studies on cell-sized vesicles, Langmuir monolayers, supported lipid bilayers, and molecular dynamics simulations is provided. Light-induced membrane area increases as high as ≈25% and a ten-fold decrease in the membrane bending rigidity is observed upon trans-to-cis azo-PC isomerization associated with membrane leaflet coupling and molecular curvature changes. Vesicle electrodeformation measurements and atomic force microscopy reveal that trans azo-PC bilayers are thicker than palmitoyl-oleoyl phosphatidylcholine (POPC) bilayers but have higher specific membrane capacitance and dielectric constant suggesting an increased ability to store electric charges across the membrane. Lastly, incubating POPC vesicles with azo-PC solutions results in the insertion of azo-PC in the membrane enabling them to become photoresponsive. All these results demonstrate that light can be used to finely manipulate the shape, mechanical and electric properties of photolipid-doped minimal cell models, and liposomal drug carriers, thus, presenting a promising therapeutic alternative for the repair of cellular disorders.
en
dc.format.extent
16 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
atomic force microscopy (AFM)
en
dc.subject
bending rigidity
en
dc.subject
giant vesicles
en
dc.subject
membrane capacitance
en
dc.subject
molecular dynamics simulations
en
dc.subject
photoswitchable lipids
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Photomanipulation of Minimal Synthetic Cells: Area Increase, Softening, and Interleaflet Coupling of Membrane Models Doped with Azobenzene-Lipid Photoswitches
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
2304336
dcterms.bibliographicCitation.doi
10.1002/advs.202304336
dcterms.bibliographicCitation.journaltitle
Advanced Science
dcterms.bibliographicCitation.number
31
dcterms.bibliographicCitation.volume
10
dcterms.bibliographicCitation.url
https://doi.org/10.1002/advs.202304336
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Chemie und Biochemie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2198-3844
refubium.resourceType.provider
WoS-Alert