dc.contributor.author
Siannas, Nikitas
dc.contributor.author
Zacharaki, Christina
dc.contributor.author
Tsipas, Polychronis
dc.contributor.author
Kim, Dong Jik
dc.contributor.author
Hamouda, Wassim
dc.contributor.author
Istrate, Cosmin
dc.contributor.author
Pintilie, Lucian
dc.contributor.author
Schmidbauer, Martin
dc.contributor.author
Dubourdieu, Catherine
dc.contributor.author
Dimoulas, Athanasios
dc.date.accessioned
2024-02-22T09:27:28Z
dc.date.available
2024-02-22T09:27:28Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/42122
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-41847
dc.description.abstract
Synapses play a vital role in information processing, learning, and memory formation in the brain. By emulating the behavior of biological synapses, electronic synaptic devices hold the promise of enabling high-performance, energy-efficient, and scalable neuromorphic computing. Ferroelectric memristive devices integrate the characteristics of both ferroelectric and memristive materials and present a far-reaching potential as artificial synapses. Here, it is reported on a new ferroelectric device on silicon, a field-effect memristor, consisting of an epitaxial ultrathin ferroelectric Hf0.5Zr0.5O2 film sandwiched between an epitaxial highly doped oxide semiconductor SrTiO3-δ and a top metal. Upon a low voltage of less than 2 V, the field-effect modulation in the semiconductor enables to access multiple states. The device works in a large time domain ranging from milliseconds down to tens of nanoseconds. By gradually switching the polarization by identical pulses, the ferroelectric diode devices can dynamically adjust the synaptic strength to mimic short- and long-term memory plasticity. Ionic contributions due to redox processes in the oxide semiconductor beneficially influence the device operation and retention.
en
dc.format.extent
14 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
artificial synapses
en
dc.subject
epitaxial HZO
en
dc.subject
ferroelectric field effect memristors
en
dc.subject
molecular beam epitaxy
en
dc.subject
neuromorphic computing
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Electronic Synapses Enabled by an Epitaxial SrTiO3-δ / Hf0.5Zr0.5O2 Ferroelectric Field-Effect Memristor Integrated on Silicon
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
2311767
dcterms.bibliographicCitation.doi
10.1002/adfm.202311767
dcterms.bibliographicCitation.journaltitle
Advanced Functional Materials
dcterms.bibliographicCitation.number
8
dcterms.bibliographicCitation.volume
34
dcterms.bibliographicCitation.url
https://doi.org/10.1002/adfm.202311767
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1616-3028
refubium.resourceType.provider
WoS-Alert