dc.contributor.author
Krivelevich, Michael
dc.contributor.author
Mészáros, Tamás
dc.contributor.author
Michaeli, Peleg
dc.contributor.author
Shikhelman, Clara
dc.date.accessioned
2024-05-30T07:14:50Z
dc.date.available
2024-05-30T07:14:50Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/42062
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-41787
dc.description.abstract
The random greedy algorithm for finding a maximal independent set in a graph constructs a maximal independent set by inspecting the graph's vertices in a random order, adding the current vertex to the independent set if it is not adjacent to any previously added vertex. In this paper, we present a general framework for computing the asymptotic density of the random greedy independent set for sequences of (possibly random) graphs by employing a notion of local convergence. We use this framework to give straightforward proofs for results on previously studied families of graphs, like paths and binomial random graphs, and to study new ones, like random trees and sparse random planar graphs. We conclude by analysing the random greedy algorithm more closely when the base graph is a tree.
en
dc.format.extent
30 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
greedy maximal independent set
en
dc.subject
random graph
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Greedy maximal independent sets via local limits
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1002/rsa.21200
dcterms.bibliographicCitation.journaltitle
Random Structures & Algorithms
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.pagestart
986
dcterms.bibliographicCitation.pageend
1015
dcterms.bibliographicCitation.volume
64
dcterms.bibliographicCitation.url
https://doi.org/10.1002/rsa.21200
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1098-2418
refubium.resourceType.provider
WoS-Alert