dc.contributor.author
Naims, Henriette
dc.contributor.author
Eppinger, Elisabeth
dc.date.accessioned
2024-01-16T11:17:53Z
dc.date.available
2024-01-16T11:17:53Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/42041
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-41766
dc.description.abstract
Expert interviews can provide interesting data for the use in qualitative comparative analysis (QCA) to investigate complex social phenomena. To guide the challenging task of data calibration from qualitative data sets, techniques have already been suggested for the transformation of qualitative data into fuzzy sets. The current article follows existing guidelines and extends them with a system for indicator-based data calibration of expert interviews. While the underlying data set is confidential due to its corporate setting, in this article the analysis of the data is made transparent and hence reproducible for potential follow-up studies. First, the process of data collection is described, and the final data sample is characterized. Consequently, a system for indicator-based data calibration is presented and the calibration results for the empirical sample are provided in form of the set membership of cases and truth tables.
• Data collection from expert interviews is described for a configurational setting
• A combined indicator-based system is used for the calibration of qualitative data
en
dc.format.extent
12 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Data calibration
en
dc.subject
Expert interviews
en
dc.subject.ddc
300 Sozialwissenschaften::330 Wirtschaft::330 Wirtschaft
dc.title
Indicator-driven data calibration of expert interviews in a configurational study
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
101699
dcterms.bibliographicCitation.doi
10.1016/j.mex.2022.101699
dcterms.bibliographicCitation.journaltitle
MethodsX
dcterms.bibliographicCitation.volume
9
dcterms.bibliographicCitation.url
https://doi.org/10.1016/j.mex.2022.101699
refubium.affiliation
Wirtschaftswissenschaft
refubium.affiliation.other
Betriebswirtschaftslehre / Management-Department
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2215-0161
refubium.resourceType.provider
WoS-Alert