dc.contributor.author
Liu, Junyu
dc.contributor.author
Liu, Minzhao
dc.contributor.author
Liu, Jin-Peng
dc.contributor.author
Ye, Ziyu
dc.contributor.author
Wang, Yunfei
dc.contributor.author
Alexeev, Yuri
dc.contributor.author
Eisert, Jens
dc.contributor.author
Jiang, Liang
dc.date.accessioned
2024-01-15T07:45:37Z
dc.date.available
2024-01-15T07:45:37Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/42029
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-41752
dc.description.abstract
Large machine learning models are revolutionary technologies of artificial intelligence whose bottlenecks include huge computational expenses, power, and time used both in the pre-training and fine-tuning process. In this work, we show that fault-tolerant quantum computing could possibly provide provably efficient resolutions for generic (stochastic) gradient descent algorithms, scaling as O(T2 x polylog(n)), where n is the size of the models and T is the number of iterations in the training, as long as the models are both sufficiently dissipative and sparse, with small learning rates. Based on earlier efficient quantum algorithms for dissipative differential equations, we find and prove that similar algorithms work for (stochastic) gradient descent, the primary algorithm for machine learning. In practice, we benchmark instances of large machine learning models from 7 million to 103 million parameters. We find that, in the context of sparse training, a quantum enhancement is possible at the early stage of learning after model pruning, motivating a sparse parameter download and re-upload scheme. Our work shows solidly that fault-tolerant quantum algorithms could potentially contribute to most state-of-the-art, large-scale machine-learning problems.
en
dc.format.extent
6 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Computer science
en
dc.subject
Quantum information
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Towards provably efficient quantum algorithms for large-scale machine-learning models
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
434
dcterms.bibliographicCitation.doi
10.1038/s41467-023-43957-x
dcterms.bibliographicCitation.journaltitle
Nature Communications
dcterms.bibliographicCitation.volume
15
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41467-023-43957-x
refubium.affiliation
Physik
refubium.affiliation.other
Dahlem Center für komplexe Quantensysteme
refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2041-1723