dc.contributor.author
Eschenbacher, Roman
dc.contributor.author
Hemauer, Felix
dc.contributor.author
Franz, Evanie
dc.contributor.author
Leng, Andreas
dc.contributor.author
Schwaab, Valentin
dc.contributor.author
Waleska-Wellnhofer, Natalie J.
dc.contributor.author
Freiberger, Eva Marie
dc.contributor.author
Fromm, Lukas
dc.contributor.author
Xu, Tao
dc.contributor.author
Papp, Christian
dc.date.accessioned
2024-01-12T09:36:17Z
dc.date.available
2024-01-12T09:36:17Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/42021
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-41744
dc.description.abstract
Molecular solar thermal systems (MOSTs) are molecular systems based on couples of photoisomers (photoswitches), which combine solar energy conversion, storage, and release. In this work, we address the catalytically triggered energy release in the promising MOST couple phenylethylesternorbornadiene/quadricyclane (PENBD/PEQC) on a Au(111) surface in a combined liquid-phase and surface science study. We investigated the system by photoelectrochemical infrared reflection absorption spectroscopy (PEC-IRRAS) in the liquid phase, conventional IRRAS and synchrotron radiation photoelectron spectroscopy (SRPES) in ultra-high vacuum (UHV). Au(111) is highly active towards catalytically triggered energy release. In the liquid phase, we did not observe any decomposition of the photoswitch, no deactivation of the catalyst within 100 conversion cycles and we could tune the energy release rate of the heterogeneously catalyzed process by applying an external potential. In UHV, submonolayers of PEQC on Au(111) are back-converted to PENBD instantaneously, even at 110 K. Multilayers of PEQC are stable up to ~220 K. Above this temperature, the intrinsic mobility of the film is high enough that PEQC molecules come into direct contact with the Au(111) surface, which catalyzes the back-conversion. We suggest that this process occurs via a singlet–triplet mechanism induced by electronic coupling between the PEQC molecules and the Au(111) surface.
en
dc.format.extent
14 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
norbornadiene
en
dc.subject
photoswitches
en
dc.subject
quadricyclane
en
dc.subject
solar energy storage
en
dc.subject
surface chemistry
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Au-Catalyzed Energy Release in a Molecular Solar Thermal (MOST) System: A Combined Liquid-Phase and Surface Science Study
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
e202300155
dcterms.bibliographicCitation.doi
10.1002/cptc.202300155
dcterms.bibliographicCitation.journaltitle
ChemPhotoChem
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
8
dcterms.bibliographicCitation.url
https://doi.org/10.1002/cptc.202300155
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2367-0932
refubium.resourceType.provider
WoS-Alert