dc.contributor.author
Conrad, Lawrence
dc.contributor.author
Alcón, Isaac
dc.contributor.author
Tremblay, Jean Christophe
dc.contributor.author
Paulus, Beate
dc.date.accessioned
2024-01-11T11:31:10Z
dc.date.available
2024-01-11T11:31:10Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/41993
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-41716
dc.description.abstract
Molecular switches based on functionalized graphene nanoribbons (GNRs) are of great interest in the development of nanoelectronics. In experiment, it was found that a significant difference in the conductance of an anthraquinone derivative can be achieved by altering the pH value of the environment. Building on this, in this work we investigate the underlying mechanism behind this effect and propose a general design principle for a pH based GNR-based switch. The electronic structure of the investigated systems is calculated using density functional theory and the transport properties at the quasi-stationary limit are described using nonequilibrium Green’s function and the Landauer formalism. This approach enables the examination of the local and the global transport through the system. The electrons are shown to flow along the edges of the GNRs. The central carbonyl groups allow for tunable transport through control of the oxidation state via the pH environment. Finally, we also test different types of GNRs (zigzag vs. armchair) to determine which platform provides the best transport switchability.
en
dc.format.extent
15 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
non-equilibrium Green’s function
en
dc.subject
Landauer formula
en
dc.subject
local currents
en
dc.subject
graphene nanoribbons
en
dc.subject
nanoelectronics
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Mechanistic Insights into Electronic Current Flow through Quinone Devices
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
3085
dcterms.bibliographicCitation.doi
10.3390/nano13243085
dcterms.bibliographicCitation.journaltitle
Nanomaterials
dcterms.bibliographicCitation.number
24
dcterms.bibliographicCitation.originalpublishername
MDPI
dcterms.bibliographicCitation.volume
13
dcterms.bibliographicCitation.url
https://doi.org/10.3390/nano13243085
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2079-4991