dc.contributor.author
Kotobi, Amir
dc.contributor.author
Singh, Kanishka
dc.contributor.author
Höche, Daniel
dc.contributor.author
Bari, Sadia
dc.contributor.author
Meißner, Robert H.
dc.contributor.author
Bande, Annika
dc.date.accessioned
2023-12-07T11:54:21Z
dc.date.available
2023-12-07T11:54:21Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/41818
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-41538
dc.description.abstract
The use of sophisticated machine learning (ML) models, such as graph neural networks (GNNs), to predict complex molecular properties or all kinds of spectra has grown rapidly. However, ensuring the interpretability of these models’ predictions remains a challenge. For example, a rigorous understanding of the predicted X-ray absorption spectrum (XAS) generated by such ML models requires an in-depth investigation of the respective black-box ML model used. Here, this is done for different GNNs based on a comprehensive, custom-generated XAS data set for small organic molecules. We show that a thorough analysis of the different ML models with respect to the local and global environments considered in each ML model is essential for the selection of an appropriate ML model that allows a robust XAS prediction. Moreover, we employ feature attribution to determine the respective contributions of various atoms in the molecules to the peaks observed in the XAS spectrum. By comparing this peak assignment to the core and virtual orbitals from the quantum chemical calculations underlying our data set, we demonstrate that it is possible to relate the atomic contributions via these orbitals to the XAS spectrum.
en
dc.format.extent
15 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Molecular modeling
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Integrating Explainability into Graph Neural Network Models for the Prediction of X-ray Absorption Spectra
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1021/jacs.3c07513
dcterms.bibliographicCitation.journaltitle
Journal of the American Chemical Society
dcterms.bibliographicCitation.number
41
dcterms.bibliographicCitation.pagestart
22584
dcterms.bibliographicCitation.pageend
22598
dcterms.bibliographicCitation.volume
145
dcterms.bibliographicCitation.url
https://doi.org/10.1021/jacs.3c07513
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1520-5126
refubium.resourceType.provider
WoS-Alert