dc.contributor.author
Scalfi, Laura
dc.contributor.author
Becker, Maximilian R.
dc.contributor.author
Netz, Roland R.
dc.contributor.author
Bocquet, Marie-Laure
dc.date.accessioned
2023-12-06T13:43:55Z
dc.date.available
2023-12-06T13:43:55Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/41784
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-41504
dc.description.abstract
Single Atom Catalysis (SAC) is an expanding field of heterogeneous catalysis in which single metallic atoms embedded in different materials catalyze a chemical reaction, but these new catalytic materials still lack fundamental understanding when used in electrochemical environments. Recent characterizations of non-noble metals like Fe deposited on N-doped graphitic materials have evidenced two types of Fe-N4 fourfold coordination, either of pyridine type or of porphyrin type. Here, we study these defects embedded in a graphene sheet and immersed in an explicit aqueous medium at the quantum level. While the Fe-pyridine SAC model is clear cut and widely studied, it is not the case for the Fe-porphyrin SAC that remains ill-defined, because of the necessary embedding of odd-membered rings in graphene. We first propose an atomistic model for the Fe-porphyrin SAC. Using spin-polarized ab initio molecular dynamics, we show that both Fe SACs spontaneously adsorb two interfacial water molecules from the solvent on opposite sides. Interestingly, we unveil a different catalytic reactivity of the two hydrated SAC motives: while the Fe-porphyrin defect eventually dissociates an adsorbed water molecule under a moderate external electric field, the Fe-pyridine defect does not convey water dissociation.
en
dc.format.extent
9 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Catalytic mechanisms
en
dc.subject
Electrocatalysis
en
dc.subject
Molecular dynamics
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Enhanced interfacial water dissociation on a hydrated iron porphyrin single-atom catalyst in graphene
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
236
dcterms.bibliographicCitation.doi
10.1038/s42004-023-01027-9
dcterms.bibliographicCitation.journaltitle
Communications Chemistry
dcterms.bibliographicCitation.volume
6
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s42004-023-01027-9
refubium.affiliation
Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2399-3669
refubium.resourceType.provider
WoS-Alert