dc.contributor.author
Gräser, Carsten
dc.contributor.author
Kornhuber, Ralf
dc.contributor.author
Podlesny, Joscha
dc.date.accessioned
2024-02-29T07:50:54Z
dc.date.available
2024-02-29T07:50:54Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/41775
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-41495
dc.description.abstract
We consider the deformation of a geological structure with non-intersecting faults that can be represented by a layered system of viscoelastic bodies satisfying rate- and state-depending friction conditions along the common interfaces. We derive a mathematical model that contains classical Dieterich- and Ruina-type friction as special cases and accounts for possibly large tangential displacements. Semi-discretization in time by a Newmark scheme leads to a coupled system of nonsmooth, convex minimization problems for rate and state to be solved in each time step. Additional spatial discretization by a mortar method and piecewise constant finite elements allows for the decoupling of rate and state by a fixed point iteration and efficient algebraic solution of the rate problem by truncated nonsmooth Newton methods. Numerical experiments with a spring slider and a layered multiscale system illustrate the behavior of our model as well as the efficiency and reliability of the numerical solver.
en
dc.format.extent
21 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Rate- and state-dependend friction
en
dc.subject
Multibody coupling
en
dc.subject
Mortar methods
en
dc.subject
Nonsmooth multigrid
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Numerical simulation of multiscale fault systems with rate- and state-dependent friction
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1007/s10596-023-10231-4
dcterms.bibliographicCitation.journaltitle
Computational Geosciences
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.pagestart
1
dcterms.bibliographicCitation.pageend
21
dcterms.bibliographicCitation.volume
28
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s10596-023-10231-4
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1573-1499
refubium.resourceType.provider
WoS-Alert