dc.contributor.author
Rudolph, Annette
dc.contributor.author
Névir, Peter
dc.date.accessioned
2023-12-05T14:13:09Z
dc.date.available
2023-12-05T14:13:09Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/41743
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-41463
dc.description.abstract
The temporal and spatial scale dependent relation of Convective Available Potential Energy (CAPE) and precipitation is investigated. Using the COSMO-REA6 data set, we ask which of the standard machine learning algorithms: perceptron, support vector machine, decision tree, random forest, k-nearest neighbor and a simple kept deep neural network algorithm can best relate these two variables. Then, we concentrate on decision trees and evaluate the relation of CAPE and precipitation across different scales. We investigate temporal resolutions of 1 hour to 24 hours and horizontal resolutions of 6 km up to 768 km. Regarding ten CAPE and two precipitation classes we find accuracy scores mostly of about 0.7 across all scales. Taking the Dynamic State Index (DSI) as additional predictor into account leads to an overall increase of the scores. We further introduce a theoretical relation of CAPE and precipitation based on the works of Hans Ertel (1933), which will be analyzed in future studies. Today it is natural to tackle complex atmospheric processes using machine learning methods. These data based methods are suggested as additional tool to complement the results gained by the governing equations of atmospheric motion.
en
dc.format.extent
11 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc/4.0/
dc.subject
Precipitation
en
dc.subject
decision tree
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::551 Geologie, Hydrologie, Meteorologie
dc.title
A machine learning approach on the investigation of the scale dependent relation of CAPE and precipitation
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1127/metz/2023/1130
dcterms.bibliographicCitation.journaltitle
Meteorologische Zeitschrift
dcterms.bibliographicCitation.number
6
dcterms.bibliographicCitation.pagestart
487
dcterms.bibliographicCitation.pageend
497
dcterms.bibliographicCitation.volume
32
dcterms.bibliographicCitation.url
https://doi.org/10.1127/metz/2023/1130
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Meteorologie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1610-1227
refubium.resourceType.provider
WoS-Alert