dc.contributor.author
Andeol, Léo
dc.contributor.author
Kawakami, Yusei
dc.contributor.author
Wada, Yuichiro
dc.contributor.author
Kanamori, Takafumi
dc.contributor.author
Müller, Klaus-Robert
dc.contributor.author
Montavon, Grégoire
dc.date.accessioned
2023-11-15T13:43:35Z
dc.date.available
2023-11-15T13:43:35Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/41548
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-41267
dc.description.abstract
Domain shifts in the training data are common in practical applications of machine learning; they occur for instance when the data is coming from different sources. Ideally, a ML model should work well independently of these shifts, for example, by learning a domain-invariant representation. However, common ML losses do not give strong guarantees on how consistently the ML model performs for different domains, in particular, whether the model performs well on a domain at the expense of its performance on another domain. In this paper, we build new theoretical foundations for this problem, by contributing a set of mathematical relations between classical losses for supervised ML and the Wasserstein distance in joint space (i.e. representation and output space). We show that classification or regression losses, when combined with a GAN-type discriminator between domains, form an upper-bound to the true Wasserstein distance between domains. This implies a more invariant representation and also more stable prediction performance across domains. Theoretical results are corroborated empirically on several image datasets. Our proposed approach systematically produces the highest minimum classification accuracy across domains, and the most invariant representation.
en
dc.format.extent
11 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Domain invariance
en
dc.subject
Subpopulation shift
en
dc.subject
Joint distribution matching
en
dc.subject
Wasserstein distance
en
dc.subject
Neural networks
en
dc.subject
Supervised learning
en
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::004 Datenverarbeitung; Informatik
dc.title
Learning domain invariant representations by joint Wasserstein distance minimization
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1016/j.neunet.2023.07.028
dcterms.bibliographicCitation.journaltitle
Neural Networks
dcterms.bibliographicCitation.pagestart
233
dcterms.bibliographicCitation.pageend
243
dcterms.bibliographicCitation.volume
167
dcterms.bibliographicCitation.url
https://doi.org/10.1016/j.neunet.2023.07.028
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Informatik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1879-2782
refubium.resourceType.provider
WoS-Alert