dc.contributor.author
Witzany, Christopher
dc.contributor.author
Rolff, Jens
dc.contributor.author
Regoes, Roland R.
dc.contributor.author
Igler, Claudia
dc.date.accessioned
2023-11-06T13:55:46Z
dc.date.available
2023-11-06T13:55:46Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/41456
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-41178
dc.description.abstract
Pharmacokinetic–pharmacodynamic (PKPD) models, which describe how drug concentrations change over time and how that affects pathogen growth, have proven highly valuable in designing optimal drug treatments aimed at bacterial eradication. However, the fast rise of antimicrobial resistance calls for increased focus on an additional treatment optimization criterion: avoidance of resistance evolution. We demonstrate here how coupling PKPD and population genetics models can be used to determine treatment regimens that minimize the potential for antimicrobial resistance evolution. Importantly, the resulting modelling framework enables the assessment of resistance evolution in response to dynamic selection pressures, including changes in antimicrobial concentration and the emergence of adaptive phenotypes. Using antibiotics and antimicrobial peptides as an example, we discuss the empirical evidence and intuition behind individual model parameters. We further suggest several extensions of this framework that allow a more comprehensive and realistic prediction of bacterial escape from antimicrobials through various phenotypic and genetic mechanisms.
en
dc.format.extent
12 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
antimicrobial resistance evolution
en
dc.subject
PKPD modelling
en
dc.subject
population genetics
en
dc.subject
dynamic selection pressure
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
The pharmacokinetic–pharmacodynamic modelling framework as a tool to predict drug resistance evolution
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
001368
dcterms.bibliographicCitation.doi
10.1099/mic.0.001368
dcterms.bibliographicCitation.journaltitle
Microbiology
dcterms.bibliographicCitation.number
7
dcterms.bibliographicCitation.volume
169
dcterms.bibliographicCitation.url
https://doi.org/10.1099/mic.0.001368
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Biologie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1465-2080
refubium.resourceType.provider
WoS-Alert