dc.contributor.author
Artiukhin, Denis G.
dc.contributor.author
Godtliebsen, Ian H.
dc.contributor.author
Schmitz, Gunnar
dc.contributor.author
Christiansen, Ove
dc.date.accessioned
2023-12-14T16:13:11Z
dc.date.available
2023-12-14T16:13:11Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/41261
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-40982
dc.description.abstract
We present a new program implementation of the Gaussian process regression adaptive density-guided approach [Schmitz et al., J. Chem. Phys. 153, 064105 (2020)] for automatic and cost-efficient potential energy surface construction in the MidasCpp program. A number of technical and methodological improvements made allowed us to extend this approach toward calculations of larger molecular systems than those previously accessible and maintain the very high accuracy of constructed potential energy surfaces. On the methodological side, improvements were made by using a Δ-learning approach, predicting the difference against a fully harmonic potential, and employing a computationally more efficient hyperparameter optimization procedure. We demonstrate the performance of this method on a test set of molecules of growing size and show that up to 80% of single point calculations could be avoided, introducing a root mean square deviation in fundamental excitations of about 3 cm−1. A much higher accuracy with errors below 1 cm−1 could be achieved with tighter convergence thresholds still reducing the number of single point computations by up to 68%. We further support our findings with a detailed analysis of wall times measured while employing different electronic structure methods. Our results demonstrate that GPR-ADGA is an effective tool, which could be applied for cost-efficient calculations of potential energy surfaces suitable for highly accurate vibrational spectra simulations.
en
dc.format.extent
12 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Potential energy surfaces
en
dc.subject
Ab initio electronic structure calculations
en
dc.subject
Machine learning
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::541 Physikalische Chemie
dc.title
Gaussian process regression adaptive density-guided approach: Toward calculations of potential energy surfaces for larger molecules
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
95795
dcterms.bibliographicCitation.articlenumber
024102
dcterms.bibliographicCitation.doi
10.1063/5.0152367
dcterms.bibliographicCitation.journaltitle
The Journal of Chemical Physics
dcterms.bibliographicCitation.number
2
dcterms.bibliographicCitation.originalpublishername
American Institute of Physics (AIP)
dcterms.bibliographicCitation.volume
159
dcterms.bibliographicCitation.url
https://doi.org/10.1063/5.0152367
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie / Physikalische und Theoretische Chemie
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
de
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1089-7690