dc.contributor.author
del Razo, Mauricio J.
dc.contributor.author
Winkelmann, Stefanie
dc.contributor.author
Klein, Rupert
dc.contributor.author
Höfling, Felix
dc.date.accessioned
2023-12-21T10:40:18Z
dc.date.available
2023-12-21T10:40:18Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/41260
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-40981
dc.description.abstract
The chemical diffusion master equation (CDME) describes the probabilistic dynamics of reaction–diffusion systems at the molecular level [del Razo et al., Lett. Math. Phys. 112, 49 (2022)]; it can be considered as the master equation for reaction–diffusion processes. The CDME consists of an infinite ordered family of Fokker–Planck equations, where each level of the ordered family corresponds to a certain number of particles and each particle represents a molecule. The equations at each level describe the spatial diffusion of the corresponding set of particles, and they are coupled to each other via reaction operators—linear operators representing chemical reactions. These operators change the number of particles in the system and, thus, transport probability between different levels in the family. In this work, we present three approaches to formulate the CDME and show the relations between them. We further deduce the non-trivial combinatorial factors contained in the reaction operators, and we elucidate the relation to the original formulation of the CDME, which is based on creation and annihilation operators acting on many-particle probability density functions. Finally, we discuss applications to multiscale simulations of biochemical systems among other future prospects.
en
dc.format.extent
20 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Reaction-diffusion system
en
dc.subject
Operator theory
en
dc.subject
Probability theory
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Chemical diffusion master equation: Formulations of reaction-diffusion processes on the molecular level
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
95882
dcterms.bibliographicCitation.articlenumber
013304
dcterms.bibliographicCitation.doi
10.1063/5.0129620
dcterms.bibliographicCitation.journaltitle
Journal of Mathematical Physics
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.originalpublishername
American Institute of Physics (AIP)
dcterms.bibliographicCitation.volume
64
dcterms.bibliographicCitation.url
https://doi.org/10.1063/5.0129620
refubium.affiliation
Mathematik und Informatik
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
de
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1089-7658