dc.contributor.author
Hirsbrunner, Simon David
dc.contributor.author
Tebbe, Michael
dc.contributor.author
Müller-Birn, Claudia
dc.date.accessioned
2024-04-19T06:17:08Z
dc.date.available
2024-04-19T06:17:08Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/41241
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-40962
dc.description.abstract
In this article, we reconsider elements of Agre’s critical technical practice approach (Agre, 1997) for critical technical practice approach for reflexive artificial intelligence (AI) research and explore ways and expansions to make it productive for an operationalization in contemporary data science. Drawing on Jörg Niewöhner’s co-laboration approach, we show how frictions within interdisciplinary work can be made productive for reflection. We then show how software development environments can be repurposed to infrastructure reflexivities and to make co-laborative engagement with AI-related technology possible and productive. We document our own co-laborative engagement with machine learning and highlight three exemplary critical technical practices that emerged out of the co-laboration: negotiating comparabilities, shifting contextual attention and challenging similarity and difference. We finally wrap up the conceptual and empirical elements and propose Reflexive Data Science (RDS) as a methodology for co-laborative engagement and infrastructured reflexivities in contemporary AI-related research. We come back to Agre’s ways of operationalizing reflexivity and introduce the building blocks of RDS: (1) organizing encounters of social contestation, (2) infrastructuring a network of anchoring devices enabling reflection, (3) negotiating timely matters of concern and (4) designing for reflection. With our research, we aim at contributing to the methodological underpinnings of epistemological and social reflection in contemporary AI research.
en
dc.format.extent
26 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
artificial intelligence
en
dc.subject
critical algorithm studies
en
dc.subject
critical data studies
en
dc.subject
data science
en
dc.subject
digital media research
en
dc.subject
human-centered computing
en
dc.subject
human-centered design
en
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::004 Datenverarbeitung; Informatik
dc.title
From critical technical practice to reflexive data science
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1177/13548565221132243
dcterms.bibliographicCitation.journaltitle
Convergence: The International Journal of Research into New Media Technologies
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.pagestart
190
dcterms.bibliographicCitation.pageend
215
dcterms.bibliographicCitation.volume
30
dcterms.bibliographicCitation.url
https://doi.org/10.1177/13548565221132243
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Informatik
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1748-7382