dc.contributor.author
Bertram, Christof A.
dc.contributor.author
Aubreville, Marc
dc.contributor.author
Donovan, Taryn A.
dc.contributor.author
Bartel, Alexander
dc.contributor.author
Wilm, Frauke
dc.contributor.author
Marzahl, Christian
dc.contributor.author
Assenmacher, Charles-Antoine
dc.contributor.author
Becker, Kathrin
dc.contributor.author
Bennett, Mark
dc.contributor.author
Klopfleisch, Robert
dc.date.accessioned
2023-10-26T08:19:10Z
dc.date.available
2023-10-26T08:19:10Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/41234
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-40955
dc.description.abstract
The mitotic count (MC) is an important histological parameter for prognostication of malignant neoplasms. However, it has inter- and intraobserver discrepancies due to difficulties in selecting the region of interest (MC-ROI) and in identifying or classifying mitotic figures (MFs). Recent progress in the field of artificial intelligence has allowed the development of high-performance algorithms that may improve standardization of the MC. As algorithmic predictions are not flawless, computer-assisted review by pathologists may ensure reliability. In the present study, we compared partial (MC-ROI preselection) and full (additional visualization of MF candidates and display of algorithmic confidence values) computer-assisted MC analysis to the routine (unaided) MC analysis by 23 pathologists for whole-slide images of 50 canine cutaneous mast cell tumors (ccMCTs). Algorithmic predictions aimed to assist pathologists in detecting mitotic hotspot locations, reducing omission of MFs, and improving classification against imposters. The interobserver consistency for the MC significantly increased with computer assistance (interobserver correlation coefficient, ICC = 0.92) compared to the unaided approach (ICC = 0.70). Classification into prognostic stratifications had a higher accuracy with computer assistance. The algorithmically preselected hotspot MC-ROIs had a consistently higher MCs than the manually selected MC-ROIs. Compared to a ground truth (developed with immunohistochemistry for phosphohistone H3), pathologist performance in detecting individual MF was augmented when using computer assistance (F1-score of 0.68 increased to 0.79) with a reduction in false negatives by 38%. The results of this study demonstrate that computer assistance may lead to more reproducible and accurate MCs in ccMCTs.
en
dc.format.extent
16 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc/4.0/
dc.subject
canine cutaneous mast cell tumors
en
dc.subject
artificial intelligence
en
dc.subject
digital pathology
en
dc.subject
deep learning
en
dc.subject
mitotic figures
en
dc.subject
mitotic count
en
dc.subject
automated image analysis
en
dc.subject
computer assistance
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::630 Landwirtschaft::630 Landwirtschaft und verwandte Bereiche
dc.title
Computer-assisted mitotic count using a deep learning–based algorithm improves interobserver reproducibility and accuracy
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1177/03009858211067478
dcterms.bibliographicCitation.journaltitle
Veterinary Pathology
dcterms.bibliographicCitation.number
2
dcterms.bibliographicCitation.pagestart
211
dcterms.bibliographicCitation.pageend
226
dcterms.bibliographicCitation.volume
59
dcterms.bibliographicCitation.url
https://doi.org/10.1177/03009858211067478
refubium.affiliation
Veterinärmedizin
refubium.affiliation.other
Institut für Tierpathologie
refubium.affiliation.other
Institut für Veterinär-Epidemiologie und Biometrie
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1544-2217