dc.contributor.author
Jäger, Philipp
dc.date.accessioned
2018-06-07T17:41:06Z
dc.date.available
2011-05-24T08:35:18.812Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/4120
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-8320
dc.description
Table of contents Publications and statement of contribution 3 Talks and
poster presentations 4 Acknowledgements 6 Table of contents 8 List of figures
11 List of tables 13 Zusammenfassung (German) 14 Summary 16 Thesis
Introduction 18 Alzheimer Disease 18 Mechanism of autophagy 23 Beclin 1 in
autophagy 26 Autophagy in neurodegenerative disease 27 Beclin 1 and autophagy
in Alzheimer Disease 29 Significance 31 References for thesis introduction 33
Chapter 1: Autophagy in Neurodegeneration and Neuroprotection 37 Summary 37
Background 37 Types of neuronal autophagy 38 Autophagy in the healthy nervous
system 44 Autophagy as a clearing mechanism for protein degradation 48
Autophagy in vesicle sorting and organelle turnover 49 Autophagosomes as
transport vacuoles 50 Regulation of autophagy 51 Autophagy in CNS disease and
injury 55 Autophagy in chronic CNS diseases 55 Autophagy in acute CNS diseases
and injuries 61 Autophagy and apoptosis 64 Concluding remarks 66 Abbreviations
66 Chapter 2: Regulation of Amyloid Precursor Protein Processing by the Beclin
1 Complex 68 Summary 68 Background 69 Results 73 Activation of autophagy
promotes APP, APP-CTF, and Aβ degradation 73 Becn1 knockdown increases APP,
APP-like proteins, APP-CTFs, and Aβ 76 Overexpression of APP does not change
Becn1 or Pik3c3 protein levels 82 Reduction of Becn1 impairs degradation of
autophagosomes and reduces Pik3c3 levels 84 Inhibition of autophagosome
turnover leads to a reduction in Becn1 and Pik3c3 levels 86 Becn1
overexpression reduces APP immunoreactivity 91 AD brains have less BECN1 and
PIK3C3 and more LC3 94 Discussion 98 Material and methods 103 Acknowledgements
107 Chapter 3: The Beclin 1 Complex in Autophagy and Alzheimer Disease 108
Summary 108 Background 108 Autophagy is a vesicular degradation pathway for
cytosolic components 109 The Beclin 1 Connection: Autophagy,
Neurodegeneration, and Alzheimer’s 112 Clinical Relevance and Current Research
115 Chapter 4: Plasma Protein Changes in Sporadic Alzheimer Disease Patients
are Linked to Cognitive Decline and Identify Disease-related Pathways 117
Summary 117 Background 118 Antibody microarrays can reliably measure relative
protein levels in plasma 123 Secreted signaling protein levels in AD patients
differ from non-demented control patients and from patients with non-AD
dementia 125 Penalized linear regression modeling confirms and expands the
pool of proteins-of-interest 131 The connectivity between secreted signaling
proteins increases significantly in AD patients 134 Meta-analysis of the
different statistical modules to rank proteins-of-interest and correlation
with an independent measure of cognitive decline 138 Protein-interaction,
PubMed co-occurance, gene-ontology, miRNA target, and chromosome band analysis
142 TNFα-, TGFβ-, and angiogenic signaling alterations in AD 145 Discussion
148 Material and methods 151 Thesis Discussion 153 Autophagy in Alzheimer
Disease 153 Changes in systemic plasma factors and their effects on autophagy
154 Outlook 157 References for thesis discussion 158 References for Chapters 1
to 4 159 Appendix: 180 Curriculum Vitae 181 Original Publications 185 List of
figures Figure 1: APP trafficking and Aβ production 21 Figure 2: APP
processing 22 Figure 3: Vesicle trafficking in autophagy 25 Figure 4: Beclin 1
deficiency in AD and APP transgenic mice 30 Figure 5: General thesis
hypothesis 32 Figure 6: Steps in macroautophagy and chaperone mediated
autophagy. 41 Figure 7: Autophagy pathway in mammals. 42 Figure 8: Control of
autophagy 54 Figure 9: Interactions between autophagy and apoptosis 65 Figure
10: Expression of Becn1 and Pik3c3 in the mouse brain 72 Figure 11: Activation
of autophagy promotes APP, APP-CTF, and Aβ degradation 74 Figure 12: Effects
of Atg5 knockdown on APP 75 Figure 13: Becn1 knockdown increases APP, APP-like
proteins, APP-CTFs, and Aβ 78 Figure 14: Quantification of B103/hAPP cells 79
Figure 15: APP accumulation in CHO/hAPP cells after Becn1 siRNA 80 Figure 16:
Effects of γ-secretase inhibitors on Becn1 shRNA 81 Figure 17: Overexpression
of APP does not change Becn1 or Pik3c3 protein levels 83 Figure 18: Reduction
of Becn1 implairs degradation of autophagosomes and reduced Pik3c3 levels 85
Figure 19: Inhibition of autophagosomal turnover leads to a reduction in Becn1
and Pik3c3 levels 89 Figure 20: Pharmaceutical inhibition of autophagy in
CHO/hAPP and B103/hAPP cells 90 Figure 21: Becn1 overexpression reduces APP
immunoreactivity 92 Figure 22: Control experiments for Becn1 lentiviral
overexpression 93 Figure 23: AD brains have less BECN1 and PIK3C3 and more LC3
96 Figure 24: Effects of BECN1 deficiency in AD 102 Figure 25: Autophagy in
mammalian cells 111 Figure 26: The role of Beclin 1 in autophagy and Alzheimer
Disease 114 Figure 27: Experimental Design of the microarray production and
analysis 119 Figure 28: Antibody microarray performance 124 Figure 29: Plasma
proteins with differential levels 129 Figure 30: Independent cohort
confirmation 130 Figure 31: Plasma proteins with differential connectivity 136
Figure 32: Meta analysis of the plasma protein hits 140 Figure 33: Ingenuity
Pathway Analysis and biological correlation analysis 147 Figure 34: Concept of
the signaling factor array 156 List of tables Table 1: Presence of autophagy
related gene expression in neuronal tissue 43 Table 2: Neuronal phenotype of
autophagy related knockout/knockdown animals. 46 Table 3: Autophagy in common
chronic neurodegenerative diseases 60 Table 4: Autophagy in acute neuronal
injury 63 Table 5: Detection of autophagy proteins in human AD brain tissue 97
Table 6: FDA approved, autophagy inducing drugs 116 Table 7: Functional
grouping of the secreted plasma proteins 122 Table 8: Human sample
demographics 126 Table 9: Plasma proteins with differential levels 127 Table
10: eNet comparison and ranking 132 Table 11: Meta-analysis of the plasma
proteins (experimental data, top 25 hits) 139 Table 12: Functional ontology
analysis of the protein hits 144
dc.description.abstract
I am interested in inflammation and protein aggregation in neurodegenerative
diseases. I pursued three main questions during my PhD project in the Wyss-
Coray lab: Does autophagy contribute to the metabolism of Amyloid Precursor
Protein (APP) in the brain? Does autophagy activity play a role in Alzheimer
Disease (AD) pathology? And how does inflammation and cellular communication
influence dementia pathology in humans? My PhD project is based on the
discovery that Beclin 1 (BECN1), a protein involved in autophagy initiation,
is selectively reduced in AD patients' cortex. We created an AD mouse model
with reduced BECN1 levels and observed significantly enhanced deposition of Aβ
plaques, increased microglia activity, and increased neuronal loss (Pickford
et al., 2008). Next, I established various cell culture models of BECN1
deficiency and overexpression (using siRNA and Lentivirus) and demonstrated
that BECN1 regulates APP levels through autophagy. Accordingly, I found that
enhancing autophagosomal turnover through starvation or pharmacological
treatments reduced levels of APP and its metabolites (Jaeger et al., 2010). To
explore how systemic inflammatory, immune signaling, and cellular
communication factors modulate neuronal processes (and potentially autophagy)
in neurological disorders we developed an antibody-based protein microarray
technique to simultaneously measure hundreds of plasma based communication
factors (chemokines, cytokines, growth factors, neurotrophins etc.) in blood
from human dementia patients and unaffected controls. I adapted existing
genomics tools and developed novel data extraction, data handling, and
analytical methods to interpret the plasma proteomics data. I discovered a
significant de-regulation of a variety of important biological pathways such
as TNF-α or TGF-β signaling (Jaeger et al., manuscript in preparation). Based
on my findings, our laboratory will now continue to explore potential
candidate pathways that might underlie the observed de-regulation of brain
autophagy in AD, both on a cellular and a systemic level.
de
dc.description.abstract
Während meiner Doktorarbeit lag der Schwerpunkt meines wissenschaftlichen
Interesses bei der Erforschung schädlicher Protein-Aggregate und von
Entzündungsstoffen, und deren Rolle bei der Entstehung neurodegenerativer
Erkrankungen. Drei zentrale Fragen haben mich dabei beschäftigt: Spielt die
Autophagie bei der Verstoffwechslung des Amyloid-Vorläufer Proteins (APP) im
Gehirn eine Rolle? Hat die Aktivität der Autophagie einen Anteil an der
Entstehung der Alzheimer Erkrankung? Und was für ein Zusammenhang besteht
zwischen einer fortschreitenden, systemweiten Entzündungs-Reaktion,
intrazellulärer Kommunikation und der Alzheimer Erkrankung im Menschen? Meine
Doktoarbeit basiert auf der Entdeckung, dass Beclin 1 (BECN1), ein Protein,
das eine wichtige Rolle bei der Initiation von Autophagie spielt, im Cortex
von Alzheimer Patienten reduziert zu sein scheint. Unser Labor entwickelte
daraufhin ein Alzheimer-Maus-Modell mit reduzierter BECN1 Expression und
stellte fest, dass diese Mäuse unter erhöhter Ablagerung von Aβ Plaques,
erhöhter Aktivität von Mikroglia und fortgeschrittenem Verlust von
Nervenzellen leiden (Pickford et al., 2008). Um den Zusammenhang zwischen
BECN1, Autophagie und Alzheimer Erkrankung besser zu verstehen, habe ich
daraufhin eine Reihe verschiedener Zellkultur-Experimente entwickelt.
Verringerung und Über-Exprimierung von BECN1 durch siRNA Plasmide und Lenti-
Virus Partikel haben mir geholfen aufzuzeigen, dass der zelluläre APP Gehalt
tatsächlich durch Autophagie reguliert werden kann. Dementsprechend kann APP
gezielt abgebaut und eine Aβ-Ansammlung verringert werden, wenn man Autophagie
entweder durch Nährstoffs-Entzug oder durch Pharmaka künstlich aktiviert
(Jaeger et al., 2010). Um der Frage nachzugehen, wie Entzündungsstoffe,
Immunsignale und zelluläre Kommunikations-Faktoren während einer
neurodegenerativen Erkrankung die Vorgänge (u.U. auch die Autophagie) in
Nervenzellen beeinflussen, hat unser Labor einen speziellen antikörper-
basierten Biochip entwickelt. Mit diesem Biochip sind wir in der Lage,
hunderte verschiedener Kommunikations-Faktoren (z.B. Chemokine, Zytokine,
Wachstumsfaktoren, Neurotrophine usw.) in Blut-Plasma-Proben demenz-erkrankter
Patienten oder gesunder Probanden zu messen. Basierend auf diesem Chip-Design
habe ich neuartige Methoden zur Daten-Extraktion, Daten-Analyse und Daten-
Interpretation entwickelt. Dabei habe ich eine signifikante Deregulation in
verschiedenen Signal-Kaskaden entdeckt, wie zum Beispiel in der TNF-α oder der
TGF-β Kaskade (Manuskript in Vorbereitung). Unser Labor ist nun damit
beschäftigt, diese potenziellen Signal-Kaskaden weiter zu erforschen, und zu
überprüfen, welche bei der beobachteten Reduktion der Autophagie beteiligt
sein könnten.
de
dc.format.extent
Getr. Zählung
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::572 Biochemie
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::616 Krankheiten
dc.title
The role of autophagy in Alzheimer disease
dc.contributor.firstReferee
Prof. Dr. Tony Wyss-Coray
dc.contributor.furtherReferee
Prof. Dr. Gerd Multhaup
dc.date.accepted
2011-05-23
dc.identifier.urn
urn:nbn:de:kobv:188-fudissthesis000000022799-1
dc.title.subtitle
from cellular mechanisms to systems proteomics
dc.title.translated
Die Rolle der Autophagie in der Alzheimer-Erkrankung
de
dc.title.translatedsubtitle
vom zellulären Mechanismus bis zur systemweiten Protein-Analyse
de
refubium.affiliation
Biologie, Chemie, Pharmazie
de
refubium.mycore.fudocsId
FUDISS_thesis_000000022799
refubium.note.author
Chapter 3: The Beclin 1 Complex in Autophagy and Alzheimer Disease ist aus
Copyright-Gründen hier nicht online vorhanden
refubium.mycore.derivateId
FUDISS_derivate_000000009482
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access