dc.contributor.author
Erdman, Paolo A.
dc.contributor.author
Noé, Frank
dc.date.accessioned
2023-10-13T13:01:00Z
dc.date.available
2023-10-13T13:01:00Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/41118
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-40839
dc.description.abstract
A quantum thermal machine is an open quantum system that enables the conversion between heat and work at the micro or nano-scale. Optimally controlling such out-of-equilibrium systems is a crucial yet challenging task with applications to quantum technologies and devices. We introduce a general model-free framework based on reinforcement learning to identify out-of-equilibrium thermodynamic cycles that are Pareto optimal tradeoffs between power and efficiency for quantum heat engines and refrigerators. The method does not require any knowledge of the quantum thermal machine, nor of the system model, nor of the quantum state. Instead, it only observes the heat fluxes, so it is both applicable to simulations and experimental devices. We test our method on a model of an experimentally realistic refrigerator based on a superconducting qubit, and on a heat engine based on a quantum harmonic oscillator. In both cases, we identify the Pareto-front representing optimal power-efficiency tradeoffs, and the corresponding cycles. Such solutions outperform previous proposals made in the literature, such as optimized Otto cycles, reducing quantum friction.
en
dc.format.extent
16 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
quantum thermal machines
en
dc.subject
reinforcement learning
en
dc.subject
quantum optimal control
en
dc.subject
quantum thermodynamics
en
dc.subject
quantum technologies
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Model-free optimization of power/efficiency tradeoffs in quantum thermal machines using reinforcement learning
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
pgad248
dcterms.bibliographicCitation.doi
10.1093/pnasnexus/pgad248
dcterms.bibliographicCitation.journaltitle
PNAS Nexus
dcterms.bibliographicCitation.number
8
dcterms.bibliographicCitation.volume
2
dcterms.bibliographicCitation.url
https://doi.org/10.1093/pnasnexus/pgad248
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2752-6542
refubium.resourceType.provider
WoS-Alert