dc.contributor.author
Adams, Lisa C
dc.contributor.author
Busch, Felix
dc.contributor.author
Truhn, Daniel
dc.contributor.author
Makowski, Marcus R
dc.contributor.author
Aerts, Hugo J W L
dc.contributor.author
Bressem, Keno K
dc.date.accessioned
2023-09-25T13:41:30Z
dc.date.available
2023-09-25T13:41:30Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/40974
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-40695
dc.description.abstract
Generative models, such as DALL-E 2 (OpenAI), could represent promising future tools for image generation, augmentation, and manipulation for artificial intelligence research in radiology, provided that these models have sufficient medical domain knowledge. Herein, we show that DALL-E 2 has learned relevant representations of x-ray images, with promising capabilities in terms of zero-shot text-to-image generation of new images, the continuation of an image beyond its original boundaries, and the removal of elements; however, its capabilities for the generation of images with pathological abnormalities (eg, tumors, fractures, and inflammation) or computed tomography, magnetic resonance imaging, or ultrasound images are still limited. The use of generative models for augmenting and generating radiological data thus seems feasible, even if the further fine-tuning and adaptation of these models to their respective domains are required first.
en
dc.subject
creating images from text
en
dc.subject
image creation
en
dc.subject
image generation
en
dc.subject
transformer language model
en
dc.subject
machine learning
en
dc.subject
generative model
en
dc.subject
artificial intelligence
en
dc.subject
medical imaging
en
dc.subject
text-to-image
en
dc.subject
diagnostic imaging
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::610 Medizin und Gesundheit
dc.title
What Does DALL-E 2 Know About Radiology?
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
e43110
dcterms.bibliographicCitation.doi
10.2196/43110
dcterms.bibliographicCitation.journaltitle
Journal of Medical Internet Research
dcterms.bibliographicCitation.originalpublishername
JMIR Publications
dcterms.bibliographicCitation.volume
25
refubium.affiliation
Charité - Universitätsmedizin Berlin
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.bibliographicCitation.pmid
36927634
dcterms.isPartOf.eissn
1438-8871