dc.contributor.author
Fast, Lea
dc.contributor.author
Temuulen, Uchralt
dc.contributor.author
Villringer, Kersten
dc.contributor.author
Kufner, Anna
dc.contributor.author
Ali, Huma Fatima
dc.contributor.author
Siebert, Eberhard
dc.contributor.author
Huo, Shufan
dc.contributor.author
Piper, Sophie K.
dc.contributor.author
Sperber, Pia Sophie
dc.contributor.author
Liman, Thomas
dc.contributor.author
Endres, Matthias
dc.contributor.author
Ritter, Kerstin
dc.date.accessioned
2023-09-20T11:35:43Z
dc.date.available
2023-09-20T11:35:43Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/40915
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-40636
dc.description.abstract
Background: Accurate prediction of clinical outcomes in individual patients following acute stroke is vital for healthcare providers to optimize treatment strategies and plan further patient care. Here, we use advanced machine learning (ML) techniques to systematically compare the prediction of functional recovery, cognitive function, depression, and mortality of first-ever ischemic stroke patients and to identify the leading prognostic factors.
Methods: We predicted clinical outcomes for 307 patients (151 females, 156 males; 68 +/- 14 years) from the PROSpective Cohort with Incident Stroke Berlin study using 43 baseline features. Outcomes included modified Rankin Scale (mRS), Barthel Index (BI), Mini-Mental State Examination (MMSE), Modified Telephone Interview for Cognitive Status (TICS-M), Center for Epidemiologic Studies Depression Scale (CES-D) and survival. The ML models included a Support Vector Machine with a linear kernel and a radial basis function kernel as well as a Gradient Boosting Classifier based on repeated 5-fold nested cross-validation. The leading prognostic features were identified using Shapley additive explanations.
Results: The ML models achieved significant prediction performance for mRS at patient discharge and after 1 year, BI and MMSE at patient discharge, TICS-M after 1 and 3 years and CES-D after 1 year. Additionally, we showed that National Institutes of Health Stroke Scale (NIHSS) was the top predictor for most functional recovery outcomes as well as education for cognitive function and depression.
Conclusion: Our machine learning analysis successfully demonstrated the ability to predict clinical outcomes after first-ever ischemic stroke and identified the leading prognostic factors that contribute to this prediction.
en
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
machine learning
en
dc.subject
outcome prediction
en
dc.subject
post-stroke depression
en
dc.subject
functional outcome
en
dc.subject
cognitive impairment
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::610 Medizin und Gesundheit
dc.title
Machine learning-based prediction of clinical outcomes after first-ever ischemic stroke
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
1114360
dcterms.bibliographicCitation.doi
10.3389/fneur.2023.1114360
dcterms.bibliographicCitation.journaltitle
Frontiers in Neurology
dcterms.bibliographicCitation.originalpublishername
Frontiers Media SA
dcterms.bibliographicCitation.volume
14
refubium.affiliation
Charité - Universitätsmedizin Berlin
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.bibliographicCitation.pmid
36895902
dcterms.isPartOf.eissn
1664-2295