dc.contributor.author
Lutomski, Corinne A.
dc.contributor.author
El-Baba, Tarick J.
dc.contributor.author
Hinkle, Joshua D.
dc.contributor.author
Liko, Idlir
dc.contributor.author
Bennett, Jack L.
dc.contributor.author
Kalmankar, Neha V.
dc.contributor.author
Kirschbaum, Carla
dc.contributor.author
Greis, Kim
dc.contributor.author
Urner, Leonhard H.
dc.contributor.author
Pagel, Kevin
dc.date.accessioned
2023-09-11T06:25:29Z
dc.date.available
2023-09-11T06:25:29Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/40798
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-40519
dc.description.abstract
Membrane proteins are challenging to analyze by native mass spectrometry (MS) as their hydrophobic nature typically requires stabilization in detergent micelles that are removed prior to analysis via collisional activation. There is however a practical limit to the amount of energy which can be applied, which often precludes subsequent characterization by top-down MS. To overcome this barrier, we have applied a modified Orbitrap Eclipse Tribrid mass spectrometer coupled to an infrared laser within a high-pressure linear ion trap. We show how tuning the intensity and time of incident photons enables liberation of membrane proteins from detergent micelles. Specifically, we relate the ease of micelle removal to the infrared absorption of detergents in both condensed and gas phases. Top-down MS via infrared multiphoton dissociation (IRMPD), results in good sequence coverage enabling unambiguous identification of membrane proteins and their complexes. By contrasting and comparing the fragmentation patterns of the ammonia channel with two class A GPCRs, we identify successive cleavage of adjacent amino acids within transmembrane domains. Using gas-phase molecular dynamics simulations, we show that areas prone to fragmentation maintain aspects of protein structure at increasing temperatures. Altogether, we propose a rationale to explain why and where in the protein fragment ions are generated.
en
dc.format.extent
12 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Infrared Multiphoton Dissociation
en
dc.subject
Mass Spectrometry
en
dc.subject
Membrane Proteins
en
dc.subject
Tandem Mass Spectrometry
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Infrared Multiphoton Dissociation Enables Top-Down Characterization of Membrane Protein Complexes and G Protein-Coupled Receptors
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
e202305694
dcterms.bibliographicCitation.doi
10.1002/anie.202305694
dcterms.bibliographicCitation.journaltitle
Angewandte Chemie International Edition
dcterms.bibliographicCitation.number
36
dcterms.bibliographicCitation.volume
62
dcterms.bibliographicCitation.url
https://doi.org/10.1002/anie.202305694
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1521-3773
refubium.resourceType.provider
WoS-Alert