dc.contributor.author
Wang, Hong
dc.contributor.author
Dai, Chengxin
dc.contributor.author
Pfeuffer, Julianus
dc.contributor.author
Sachsenberg, Timo
dc.contributor.author
Sanchez, Aniel
dc.contributor.author
Bai, Mingze
dc.contributor.author
Perez-Riverol, Yasset
dc.date.accessioned
2023-10-24T08:27:07Z
dc.date.available
2023-10-24T08:27:07Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/40795
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-40516
dc.description.abstract
Relative and absolute intensity-based protein quantification across cell lines, tissue atlases and tumour datasets is increasingly available in public datasets. These atlases enable researchers to explore fundamental biological questions, such as protein existence, expression location, quantity and correlation with RNA expression. Most studies provide MS1 feature-based label-free quantitative (LFQ) datasets; however, growing numbers of isobaric tandem mass tags (TMT) datasets remain unexplored. Here, we compare traditional intensity-based absolute quantification (iBAQ) proteome abundance ranking to an analogous method using reporter ion proteome abundance ranking with data from an experiment where LFQ and TMT were measured on the same samples. This new TMT method substitutes reporter ion intensities for MS1 feature intensities in the iBAQ framework. Additionally, we compared LFQ-iBAQ values to TMT-iBAQ values from two independent large-scale tissue atlas datasets (one LFQ and one TMT) using robust bottom-up proteomic identification, normalisation and quantitation workflows.
en
dc.format.extent
6 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
absolute protein expression
en
dc.subject
proteomics data reanalysis
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
Tissue-based absolute quantification using large-scale TMT and LFQ experiments
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
2300188
dcterms.bibliographicCitation.doi
10.1002/pmic.202300188
dcterms.bibliographicCitation.journaltitle
Proteomics
dcterms.bibliographicCitation.number
20
dcterms.bibliographicCitation.volume
23
dcterms.bibliographicCitation.url
https://doi.org/10.1002/pmic.202300188
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Informatik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1615-9861
refubium.resourceType.provider
WoS-Alert