dc.contributor.author
Gupta, Pranshu
dc.contributor.author
Hamann, Fabian
dc.contributor.author
Müyesser, Alp
dc.contributor.author
Parczyk, Olaf
dc.contributor.author
Sgueglia, Amedeo
dc.date.accessioned
2023-12-19T08:18:09Z
dc.date.available
2023-12-19T08:18:09Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/40761
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-40482
dc.description.abstract
Given a collection of hypergraphs 𝐇=(𝐻1,...,𝐻𝑚) with the same vertex set, an 𝑚-edge graph 𝐹⊂∪𝑖∈[𝑚]𝐻𝑖 is atransversal if there is a bijection 𝜙∶𝐸(𝐹)→[𝑚] such that 𝑒∈𝐸(𝐻𝜙(𝑒)) for each 𝑒∈𝐸(𝐹). How large does the minimum degree of each 𝐻𝑖 need to be so that 𝐇 necessarily contains a copy of 𝐹 that is a transversal? Each 𝐻𝑖 in the collection could be the same hypergraph,hence the minimum degree of each 𝐻𝑖 needs to be large enough to ensure that 𝐹⊆𝐻𝑖. Since its general introduction by Joos and Kim (Bull. Lond. Math. Soc. 52 (2020)498–504), a growing body of work has shown that inmany cases this lower bound is tight. In this paper, wegive a unified approach to this problem by providinga widely applicable sufficient condition for this lowerbound to be asymptotically tight. This is general enoughto recover many previous results in the area and obtainnovel transversal variants of several classical Dirac-typeresults for (powers of) Hamilton cycles. For example, wederive that any collection of 𝑟𝑛 graphs on an 𝑛-vertex set, each with minimum degree at least (𝑟∕(𝑟 + 1) +𝑜(1))𝑛, contains a transversal copy of the 𝑟th power of a Hamilton cycle. This can be viewed as a rainbow versionof the Pósa–Seymour conjecture.
en
dc.format.extent
23 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
general approach
en
dc.subject
transversal versions
en
dc.subject
Dirac-type theorems
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
A general approach to transversal versions of Dirac-type theorems
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1112/blms.12896
dcterms.bibliographicCitation.journaltitle
Bulletin of the London Mathematical Society
dcterms.bibliographicCitation.number
6
dcterms.bibliographicCitation.pagestart
2817
dcterms.bibliographicCitation.pageend
2839
dcterms.bibliographicCitation.volume
55
dcterms.bibliographicCitation.url
https://doi.org/10.1112/blms.12896
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1469-2120
refubium.resourceType.provider
WoS-Alert