dc.contributor.author
Magnall, Joseph M.
dc.contributor.author
Wirth, Richard
dc.contributor.author
Hayward, Nicholas
dc.contributor.author
Gleeson, Sarah A.
dc.contributor.author
Schreiber, Anja
dc.date.accessioned
2023-09-08T10:32:21Z
dc.date.available
2023-09-08T10:32:21Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/40759
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-40480
dc.description.abstract
Stratiform to stratabound replacement of a mixed siliciclastic-carbonate host rock is a defining characteristic of many sediment-hosted base metal deposits. Mineralized rocks in clastic-dominated (CD-type) Zn-Pb ore deposits, which represent our highest value base metal resources, are generally thin (101 m), laterally extensive (103 m), and stratiform to stratabound in fine-grained siltstone and mudstone facies. At the recently discovered Teena CD-type Zn-Pb deposit (Proterozoic Carpentaria province, Australia), the host rock was undergoing burial diagenesis when altered and mineralized by hydrothermal fluids that moved up to 2 km lateral to the fluid input conduit (growth fault) through intraformational intervals. In much of the deposit, carbonate dissolution was an important reaction permeability control, although significant amounts of mineralization also occur in carbonate-free siliciclastic beds. In this study, transmission electron microscopy (TEM) data has been generated on a drill core sample that preserves a sharp reaction front between mineralized and unmineralized domains of the fine-grained siliciclastic compositional end member (carbonate free). Petrographic and mineralogical data provide evidence that oxidized hydrothermal fluids moved through the protolith via reaction permeability that developed from feldspar dissolution. The nature of reactive fluid flow was determined by reactions that took place at the fluid-mineral interface. Pyrite formation during the earliest stage of the hydrothermal paragenesis increased the mineral reactive surface area in the protolith. Acidity was then generated in situ via self-sustaining reactions involving pyrite oxidation, transient Fe sulfate formation, and sphalerite precipitation, which provided positive feedbacks to enhance porosity creation and further fluid infiltration and mineralization. In the absence of carbonate, however, ore fluid pH was buffered by K-feldspar dissolution (~4.5), thereby ensuring sphalerite precipitation was not inhibited under more acidic conditions. All CD-type deposits in the Carpentaria province are hosted by a protolith comprising carbonate, K-feldspar, pyrite, and organic matter; these phases set the boundary conditions for the development of self-sustaining reactions during ore formation. Importantly, these self-sustaining reactions represent a Goldilocks zone for ore formation that is applicable to other sediment-hosted deposits that formed via replacement of mixed siliciclastic-carbonate host rocks (e.g., stratiform Cu).
en
dc.format.extent
14 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc/4.0/
dc.subject
Stratiform Host-Rock Replacement
en
dc.subject
Self-Sustaining Reactions
en
dc.subject
Clastic-Dominated (CD-type) Zn Deposit
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::550 Geowissenschaften
dc.title
Stratiform Host-Rock Replacement via Self-Sustaining Reactions in a Clastic-Dominated (CD-type) Zn Deposit
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.5382/econgeo.4988
dcterms.bibliographicCitation.journaltitle
Economic Geology
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.pagestart
823
dcterms.bibliographicCitation.pageend
836
dcterms.bibliographicCitation.volume
118
dcterms.bibliographicCitation.url
https://doi.org/10.5382/econgeo.4988
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Geologische Wissenschaften / Fachrichtung Geochemie, Hydrogeologie, Mineralogie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1554-0774
refubium.resourceType.provider
WoS-Alert