dc.contributor.author
Hanu, Matei
dc.contributor.author
Latz, Jonas
dc.contributor.author
Schillings, Claudia
dc.date.accessioned
2023-09-05T12:54:06Z
dc.date.available
2023-09-05T12:54:06Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/40711
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-40432
dc.description.abstract
We consider the ensemble Kalman inversion (EKI) which has been recently introduced as an efficient, gradient-free optimisation method to estimate unknown parameters in an inverse setting. In the case of large data sets, the EKI becomes computationally infeasible as the data misfit needs to be evaluated for each particle in each iteration. Here, randomised algorithms like stochastic gradient descent have been demonstrated to successfully overcome this issue by using only a random subset of the data in each iteration, so-called subsampling techniques. Based on a recent analysis of a continuous-time representation of stochastic gradient methods, we propose, analyse, and apply subsampling-techniques within EKI. Indeed, we propose two different subsampling techniques: either every particle observes the same data subset (single subsampling) or every particle observes a different data subset (batch subsampling).
en
dc.format.extent
33 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
inverse problems
en
dc.subject
stochastic optimisation
en
dc.subject
data subsampling
en
dc.subject
particle system
en
dc.subject
piecewise-deterministic Markov process
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Subsampling in ensemble Kalman inversion
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
094002
dcterms.bibliographicCitation.doi
10.1088/1361-6420/ace64b
dcterms.bibliographicCitation.journaltitle
Inverse Problems
dcterms.bibliographicCitation.number
9
dcterms.bibliographicCitation.originalpublishername
IOP Publishing
dcterms.bibliographicCitation.volume
39
dcterms.bibliographicCitation.url
https://doi.org/10.1088/1361-6420/ace64b
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1361-6420
refubium.resourceType.provider
WoS-Alert