dc.contributor.author
Fuchs, Georg
dc.date.accessioned
2023-11-28T12:14:36Z
dc.date.available
2023-11-28T12:14:36Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/40644
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-40365
dc.description.abstract
Objective: This thesis aims to evaluate the relationship between the skeletal muscle index derived from computed tomography (CT) images and patient outcomes, as well as its implications for patient care. This goal was pursued in five individual studies: Studies A and B evaluated the relationship between the lumbar skeletal muscle index (L3SMI) and patient outcomes in the intensive care unit (ICU) and oncology setting, respectively. Studies C and D evaluated the effect of CT acquisition parameters on body composition measures. Study E proposed a novel technique to automate the segmentation of skeletal muscle using a fully automated deep learning system.
Material and methods: In total, 1328 axial CT images were included in the five studies. Patients in studies A and B were part of the clinical trials NCT01967056 and NCT01401907 at Massachusetts General Hospital (MGH), respectively. Body composition indices were computed using semi-automated segmentation. Multivariable regression models with a priori defined covariates were used to analyze clinical outcomes. To evaluate whether CT acquisition parameters influence segmentation, the Bland-Altman approach was used. In study E, a fully convolutional neural network was implemented for deep learning-based automatic segmentation.
Results: Study A found lower L3SMI to be a predictor of increased mortality within 30 days of extubation (p = 0.033), increased rate of pneumonia within 30 days of extubation (p = 0.002), increased adverse discharge disposition (p = 0.044), longer hospital stays post-extubation (p = 0.048), and higher total hospital costs (p = 0.043). In study B, low L3SMI was associated with worse quality of life (p = 0.048) and increased depression symptoms (p = 0.005). Threshold-based segmentation of skeletal muscle in study C and adipose tissue compartments in study D were significantly affected by CT acquisition parameters. The proposed deep learning system in study E provided automatic segmentation of skeletal muscle cross-sectional area and achieved a high congruence to segmentations performed by domain experts (average Dice coefficient of 0.93).
Conclusion: L3SMI is a useful tool for the assessment of muscle mass in clinical practice. In critically ill patients, L3SMI can provide clinically useful information about patient outcomes at the time of extubation. Patients with advanced cancer who suffered from low muscle mass reported worse quality of life and increased depression symptoms. This highlights the clinical relevance of addressing muscle loss early on as part of a multimodal treatment plan. Importantly, indices utilized in body composition analysis are significantly affected by CT acquisition parameters. These effects should be considered when body composition analysis is used in clinical practice or research studies. Finally, our fully automated deep learning system enabled instantaneous segmentation of skeletal muscle.
en
dc.description.abstract
Zielsetzung: Das Ziel der vorliegenden Dissertation war es, den Einfluss des auf CT-Bildern berechneten Skelettmuskelindexes auf klinische Ergebnisse von Patienten und die daraus resultierenden Implikationen für die Patientenversorgung zu evaluieren. Dieses Ziel wurde in fünf Einzelstudien verfolgt: In den Studien A und B wurde der Einfluss des lumbalen Skelettmuskelindex (L3SMI) auf klinische Endpunkte von Patienten auf der Intensivstation sowie in der Onkologie untersucht. Die Studien C und D evaluierten die Auswirkungen von CT-Akquisitionsparametern auf Indizes der Körperzusammensetzung. Studie E stellte eine neuartige Technik der automatisierten Segmentierung von Skelettmuskulatur vor, die durch maschinelles Lernen ermöglicht wurde.
Material und Methoden: Insgesamt wurden 1328 axiale CT-Bilder in die fünf Studien eingeschlossen. Die Patienten der Studien A und B waren Teilnehmer der klinischen Studien NCT01967056 und NCT01401907 am Massachusetts General Hospital. Die Indizes der Körperzusammensetzung wurden mithilfe halbautomatischer Segmentierung berechnet. Die klinischen Endpunkte wurden in multivariablen Regressionsmodellen mit a priori definierten Kovariaten analysiert. Um zu evaluieren, ob CT-Akquisitionsparameter die Segmentierung beeinflussen, wurde der Bland-Altman-Ansatz verwendet. In Studie E wurden ein künstliches neuronales Netzwerk sowie maschinelles Lernen für die automatische Segmentierung eingesetzt.
Ergebnisse: In Studie A war ein niedriger L3SMI ein Prädiktor für eine höhere Mortalität (p = 0.033) und Pneumonierate (p = 0.002) innerhalb von 30 Tagen nach der Extubation sowie für mehr ungünstige Entlassungen (p = 0.044) und höhere Behandlungskosten für den gesamten Krankenhausaufenthalt (p = 0.043). Ein niedriger L3SMI war in Studie B mit einer schlechteren Lebensqualität (p = 0.048) und stärkeren depressiven Symptomen (p = 0.005) assoziiert. Die schwellenwertbasierte Segmentierung der Skelettmuskulatur in Studie C und der Fettgewebekompartimente in Studie D wurde durch CT-Akquisitionsparameter signifikant beeinflusst. Das in Studie E vorgestellte vollautomatische Segmentierungssystem erreichte eine hohe Übereinstimmung mit den durch Experten erstellten Segmentationen (durchschnittlicher Dice-Koeffizient von 0.93).
Fazit: Der L3SMI ist ein Werkzeug zur Beurteilung von Muskelmasse. Bei Intensivpatienten kann L3SMI zum Zeitpunkt der Extubation nützliche klinische Informationen liefern. Patienten mit fortgeschrittener Krebserkrankung, die zudem eine geringere Muskelmasse hatten, berichteten über eine schlechtere Lebensqualität und stärkere depressive Symptome. Dies unterstreicht die Notwendigkeit, die Muskulatur frühzeitig als Teil eines multimodalen Behandlungskonzeptes zu adressieren. Die Indizes der Körperzusammensetzung werden signifikant von CT-Akquisitionsparametern beeinflusst. Darüber hinaus ermöglichte unser vollautomatisiertes System dank maschinellen Lernens die verzögerungsfreie Segmentierung von Skelettmuskulatur.
de
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Computed Tomography
en
dc.subject
Segmentation
en
dc.subject
Quality of Life
en
dc.subject
Intensive Care
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::610 Medizin und Gesundheit
dc.title
Body Composition Analysis: Skeletal Muscle Measurement with Computed Tomography and Implications for Patient Care
dc.contributor.gender
male
dc.contributor.firstReferee
N.N.
dc.contributor.furtherReferee
N.N.
dc.date.accepted
2023-11-30
dc.identifier.urn
urn:nbn:de:kobv:188-refubium-40644-0
dc.title.translated
Analyse der Körperzusammensetzung: Messung der Skelettmuskulatur mit Computertomographie und Implikationen für die Patientenversorgung
ger
refubium.affiliation
Charité - Universitätsmedizin Berlin
refubium.isSupplementedBy.doi
https://doi.org/10.1016/j.jcrc.2017.10.033
refubium.isSupplementedBy.doi
https://doi.org/10.1634/theoncologist.2017-0255
refubium.isSupplementedBy.doi
https://doi.org/10.1007/s00330-017-5191-3
refubium.isSupplementedBy.doi
https://doi.org/10.2214/AJR.20.23280
refubium.isSupplementedBy.doi
https://doi.org/10.1007/s10278-017-9988-z
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access