dc.contributor.author
Nill, Florian
dc.date.accessioned
2023-08-31T10:39:31Z
dc.date.available
2023-08-31T10:39:31Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/40621
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-40342
dc.description.abstract
Symmetry concepts in parametrized dynamical systems may reduce the number of external parameters by a suitable normalization prescription. If, under the action of a symmetry group G , parameter space A becomes a (locally) trivial principal bundle, A ≅ A / G × G , then the normalized dynamics only depends on the quotient A / G . In this way, the dynamics of fractional variables in homogeneous epidemic SI(R)S models, with standard incidence, absence of R-susceptibility and compartment independent birth and death rates, turns out to be isomorphic to (a marginally extended version of) Hethcote’s classic endemic model, first presented in 1973. The paper studies a 10-parameter master model with constant and I-linear vaccination rates, vertical transmission and a vaccination rate for susceptible newborns. As recently shown by the author, all demographic parameters are redundant. After adjusting time scale, the remaining 5-parameter model admits a 3-dimensional abelian scaling symmetry. By normalization we end up with Hethcote’s extended 2-parameter model. Thus, in view of symmetry concepts, reproving theorems on endemic bifurcation and stability in such models becomes needless.
en
dc.format.extent
19 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
symmetries in parametric dynamical systems
en
dc.subject
classic endemic model
en
dc.subject
parameter reduction
en
dc.subject
normalization
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Scaling Symmetries and Parameter Reduction in Epidemic SI(R)S Models
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
1390
dcterms.bibliographicCitation.doi
10.3390/sym15071390
dcterms.bibliographicCitation.journaltitle
Symmetry
dcterms.bibliographicCitation.number
7
dcterms.bibliographicCitation.originalpublishername
MDPI
dcterms.bibliographicCitation.volume
15
dcterms.bibliographicCitation.url
https://doi.org/10.3390/sym15071390
refubium.affiliation
Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2073-8994