dc.contributor.author
Seifert, Tom S.
dc.contributor.author
Go, Dongwook
dc.contributor.author
Hayashi, Hiroki
dc.contributor.author
Rouzegar, Reza
dc.contributor.author
Freimuth, Frank
dc.contributor.author
Ando, Kazuya
dc.contributor.author
Mokrousov, Yuriy
dc.contributor.author
Kampfrath, Tobias
dc.date.accessioned
2023-10-24T08:07:18Z
dc.date.available
2023-10-24T08:07:18Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/40492
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-40213
dc.description.abstract
The emerging field of orbitronics exploits the electron orbital momentum L. Compared to spin-polarized electrons, L may allow the transfer of magnetic information with considerably higher density over longer distances in more materials. However, direct experimental observation of L currents, their extended propagation lengths and their conversion into charge currents has remained challenging. Here, we optically trigger ultrafast angular-momentum transport in Ni|W|SiO2 thin-film stacks. The resulting terahertz charge-current bursts exhibit a marked delay and width that grow linearly with the W thickness. We consistently ascribe these observations to a ballistic L current from Ni through W with a giant decay length (~80 nm) and low velocity (~0.1 nm fs−1). At the W/SiO2 interface, the L flow is efficiently converted into a charge current by the inverse orbital Rashba–Edelstein effect, consistent with ab initio calculations. Our findings establish orbitronic materials with long-distance ballistic L transport as possible candidates for future ultrafast devices and an approach to discriminate Hall-like and Rashba–Edelstein-like conversion processes.
en
dc.format.extent
12 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Magnetic properties and materials
en
dc.subject
Terahertz optics
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Time-domain observation of ballistic orbital-angular-momentum currents with giant relaxation length in tungsten
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1038/s41565-023-01470-8
dcterms.bibliographicCitation.journaltitle
Nature Nanotechnology
dcterms.bibliographicCitation.number
10
dcterms.bibliographicCitation.pagestart
1132
dcterms.bibliographicCitation.pageend
1138
dcterms.bibliographicCitation.volume
18
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41565-023-01470-8
refubium.affiliation
Physik
refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1748-3395