dc.contributor.author
Bishnoi, Anurag
dc.contributor.author
Boyadzhiyska, Simona
dc.contributor.author
Das, Shagnik
dc.contributor.author
Mészáros, Tamás
dc.date.accessioned
2023-08-10T09:13:55Z
dc.date.available
2023-08-10T09:13:55Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/40416
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-40137
dc.description.abstract
We study the problem of determining the minimum number f(n,k,d) of affine subspaces of codimension d that are required to cover all points of Fn2∖{0⃗ } at least k times while covering the origin at most k−1 times. The case k=1 is a classic result of Jamison, which was independently obtained by Brouwer and Schrijver for d=1. The value of f(n,1,1) also follows from a well-known theorem of Alon and Füredi about coverings of finite grids in affine spaces over arbitrary fields. Here we determine the value of this function exactly in various ranges of the parameters. In particular, we prove that for k≥2n−d−1 we have f(n,k,d)=2dk−⌊k2n−d⌋, while for n>22dk−k−d+1 we have f(n,k,d)=n+2dk−d−2, and obtain asymptotic results between these two ranges. While previous work in this direction has primarily employed the polynomial method, we prove our results through more direct combinatorial and probabilistic arguments, and also exploit a connection to coding theory.
en
dc.format.extent
14 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Boolean hypercube
en
dc.subject
subspace coverings
en
dc.subject
blocking sets
en
dc.subject
Alon–Füredi theorem
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Subspace coverings with multiplicities
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1017/S0963548323000123
dcterms.bibliographicCitation.journaltitle
Combinatorics, Probability and Computing
dcterms.bibliographicCitation.number
5
dcterms.bibliographicCitation.pagestart
782
dcterms.bibliographicCitation.pageend
795
dcterms.bibliographicCitation.volume
32
dcterms.bibliographicCitation.url
https://doi.org/10.1017/S0963548323000123
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
metadata only access
dcterms.isPartOf.eissn
1469-2163
refubium.resourceType.provider
WoS-Alert