dc.contributor.author
Iravani, Sahar
dc.contributor.author
Conrad, Tim O. F.
dc.date.accessioned
2023-08-09T11:56:32Z
dc.date.available
2023-08-09T11:56:32Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/40395
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-40116
dc.description.abstract
Analyzing mass spectrometry-based proteomics data with deep learning (DL) approaches poses several challenges due to the high dimensionality, low sample size, and high level of noise. Additionally, DL-based workflows are often hindered to be integrated into medical settings due to the lack of interpretable explanation. We present DLearnMS, a DL biomarker detection framework, to address these challenges on proteomics instances of liquid chromatography-mass spectrometry (LC-MS) - a well-established tool for quantifying complex protein mixtures. Our DLearnMS framework learns the clinical state of LC-MS data instances using convolutional neural networks. Based on the trained neural networks, we show how biomarkers can be identified using layer-wise relevance propagation. This enables detecting discriminating regions of the data and the design of more robust networks. One of the main advantages over other established methods is that no explicit preprocessing step is needed in our DLearnMS framework. Our evaluation shows that DLearnMS outperforms conventional LC-MS biomarker detection approaches in identifying fewer false positive peaks while maintaining a comparable amount of true positives peaks. Code availability: The code is available from the following GIT repository: https://github.com/SaharIravani/DlearnMS
en
dc.format.extent
11 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Biomarker detection
en
dc.subject
mass spectrometry
en
dc.subject
LC-MS proteomics
en
dc.subject
deep learning interpretation
en
dc.subject
layer-wise relevance propagation
en
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::004 Datenverarbeitung; Informatik
dc.title
An Interpretable Deep Learning Approach for Biomarker Detection in LC-MS Proteomics Data
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1109/TCBB.2022.3141656
dcterms.bibliographicCitation.journaltitle
IEEE/ACM Transactions on Computational Biology and Bioinformatics
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.pagestart
151
dcterms.bibliographicCitation.pageend
161
dcterms.bibliographicCitation.volume
20
dcterms.bibliographicCitation.url
https://doi.org/10.1109/TCBB.2022.3141656
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Informatik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1557-9964
refubium.resourceType.provider
WoS-Alert