dc.contributor.author
El-Nagar, Gumaa A. A.
dc.contributor.author
Haun, Flora
dc.contributor.author
Gupta, Siddharth
dc.contributor.author
Stojkovikj, Sasho
dc.contributor.author
Mayer, Matthew T. T.
dc.date.accessioned
2023-08-09T08:06:58Z
dc.date.available
2023-08-09T08:06:58Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/40383
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-40104
dc.description.abstract
Membrane electrode assemblies enable CO2 electrolysis at industrially relevant rates, yet their operational stability is often limited by formation of solid precipitates in the cathode pores, triggered by cation crossover from the anolyte due to imperfect ion exclusion by anion exchange membranes. Here we show that anolyte concentration affects the degree of cation movement through the membranes, and this substantially influences the behaviors of copper catalysts in catholyte-free CO2 electrolysers. Systematic variation of the anolyte (KOH or KHCO3) ionic strength produced a distinct switch in selectivity between either predominantly CO or C2+ products (mainly C2H4) which closely correlated with the quantity of alkali metal cation (K+) crossover, suggesting cations play a key role in C-C coupling reaction pathways even in cells without discrete liquid catholytes. Operando X-ray absorption and quasi in situ X-ray photoelectron spectroscopy revealed that the Cu surface speciation showed a strong dependence on the anolyte concentration, wherein dilute anolytes resulted in a mixture of Cu+ and Cu0 surface species, while concentrated anolytes led to exclusively Cu0 under similar testing conditions. These results show that even in catholyte-free cells, cation effects (including unintentional ones) significantly influence reaction pathways, important to consider in future development of catalysts and devices.
en
dc.format.extent
10 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Electrocatalysis
en
dc.subject
cation crossover
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Unintended cation crossover influences CO2 reduction selectivity in Cu-based zero-gap electrolysers
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
2062
dcterms.bibliographicCitation.doi
10.1038/s41467-023-37520-x
dcterms.bibliographicCitation.journaltitle
Nature Communications
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
14
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41467-023-37520-x
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2041-1723
refubium.resourceType.provider
WoS-Alert