dc.contributor.author
Meng, Yiming
dc.contributor.author
Namachchivaya, N. Sri
dc.contributor.author
Perkowski, Nicolas
dc.date.accessioned
2023-08-09T07:55:51Z
dc.date.available
2023-08-09T07:55:51Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/40382
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-40103
dc.description.abstract
The Moore-Greitzer partial differential equation (PDE) is a commonly used mathematical model for capturing flow and pressure changes in axial-flow jet engine compressors. Determined by compressor geometry, the deterministic model is characterized by three types of Hopf bifurcations as the throttle coefficient decreases, namely surge (mean flow oscillations), stall (inlet flow disturbances) or a combination of both. Instabilities place fundamental limits on jet-engine operating range and thus limit the design space. In contrast to the deterministic PDEs, the Hopf bifurcation in stochastic PDEs is not well understood. The goal of this particular work is to rigorously develop low-dimensional approximations using a multiscale analysis approach near the deterministic stall bifurcation points in the presence of additive noise acting on the fast modes. We also show that the reduced-dimensional approximations (SDEs) contain multiplicative noise. Instability margins in the presence of uncertainties can be thus approximated, which will eventually lead to lighter and more efficient jet engine design.
en
dc.format.extent
36 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Moore-Greitzer PDE model
en
dc.subject
Additive noise
en
dc.subject
Hopf bifurcation
en
dc.subject
Multiscale analysis
en
dc.subject
Low-dimensional approximations
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Hopf Bifurcations of Moore-Greitzer PDE Model with Additive Noise
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
74
dcterms.bibliographicCitation.doi
10.1007/s00332-023-09929-7
dcterms.bibliographicCitation.journaltitle
Journal of Nonlinear Science
dcterms.bibliographicCitation.number
5
dcterms.bibliographicCitation.volume
33
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s00332-023-09929-7
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1432-1467
refubium.resourceType.provider
WoS-Alert